File size: 7,801 Bytes
87e7d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
9b98ab0
87e7d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98ab0
 
87e7d05
 
9b98ab0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""
This files includes functions to create molecular descriptors.
As an input it takes a list of SMILES and it outputs a numpy array of descriptors.
"""

import json
import argparse

import numpy as np

from datasets import load_dataset

from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
from rdkit.Chem.rdchem import Mol

from .utils import (
    TASKS,
    KNOWN_DESCR,
    HF_TOKEN,
    USED_200_DESCR,
    Standardizer,
)

parser = argparse.ArgumentParser(
    description="Data preprocessing script for the Tox21 dataset"
)

parser.add_argument(
    "--save_folder",
    type=str,
    default="data/",
)

parser.add_argument(
    "--use_hf",
    type=int,
    default=0,
)

parser.add_argument(
    "--tox_smarts_filepath",
    type=str,
    default="assets/tox_smarts.json",
)


def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
    """This function creates cleaned RDKit mol objects from a list of SMILES.
    Args:
        smiles (list[str]): list of SMILES
    Returns:
        list[Mol]: list of cleaned molecules
        np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` atindex `i` could not be cleaned and was removed.
    """
    sm = Standardizer(canon_taut=True)

    clean_mol_mask = list()
    mols = list()
    for i, smile in enumerate(smiles):
        mol = Chem.MolFromSmiles(smile)
        standardized_mol, _ = sm.standardize_mol(mol)
        is_cleaned = standardized_mol is not None
        clean_mol_mask.append(is_cleaned)
        if not is_cleaned:
            continue
        can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
        mols.append(can_mol)

    return mols, np.array(clean_mol_mask)


def create_ecfp_fps(mols: list[Mol], radius=None, fpsize=None) -> np.ndarray:
    """This function ECFP fingerprints for a list of molecules.
    Args:
        mols (list[Mol]): list of molecules
    Returns:
        np.ndarray: ECFP fingerprints of molecules
    """
    ecfps = list()

    kwargs = {}
    if not fpsize is None:
        kwargs["fpSize"] = fpsize
    if not radius is None:
        kwargs["radius"] = radius
    for mol in mols:
        gen = rdFingerprintGenerator.GetMorganGenerator(countSimulation=True, **kwargs)
        fp_sparse_vec = gen.GetCountFingerprint(mol)

        fp = np.zeros((0,), np.int8)
        DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)

        ecfps.append(fp)

    return np.array(ecfps)


def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
    maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
    return np.array(maccs)


def get_tox_patterns(filepath: str):
    """This calculates tox features defined in tox_smarts.json.
    Args:
        mols: A list of Mol
        n_jobs: If >1 multiprocessing is used
    """
    # load patterns
    with open(filepath) as f:
        smarts_list = [s[1] for s in json.load(f)]

    # Code does not work for this case
    assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0

    # Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
    # and then use them for all molecules. This gives a huge speedup over existing code.
    # a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
    all_patterns = []
    for smarts in smarts_list:
        patterns = []  # list of smarts-patterns
        # value for each of the patterns above. Negates the values of the above later.
        negations = []

        if " AND " in smarts:
            smarts = smarts.split(" AND ")
            merge_any = False  # If an ' AND ' is found all 'subsmarts' have to match
        else:
            # If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
            # This also accumulates smarts where neither ' OR ' nor ' AND ' occur
            smarts = smarts.split(" OR ")
            merge_any = True

        # for all subsmarts check if they are preceded by 'NOT '
        for s in smarts:
            neg = s.startswith("NOT ")
            if neg:
                s = s[4:]
            patterns.append(Chem.MolFromSmarts(s))
            negations.append(neg)

        all_patterns.append((patterns, negations, merge_any))
    return all_patterns


def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
    """Matches the tox patterns against a molecule. Returns a boolean array"""
    tox_data = []
    for mol in mols:
        mol_features = []
        for patts, negations, merge_any in patterns:
            matches = [mol.HasSubstructMatch(p) for p in patts]
            matches = [m != n for m, n in zip(matches, negations)]
            if merge_any:
                pres = any(matches)
            else:
                pres = all(matches)
            mol_features.append(pres)

        tox_data.append(np.array(mol_features))

    return np.array(tox_data)


def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
    """This function creates RDKit descriptors for a list of molecules.
    Args:
        mols (list[Mol]): list of molecules
    Returns:
        np.ndarray: RDKit descriptors of molecules
    """
    rdkit_descriptors = list()

    for mol in mols:
        descrs = []
        for _, descr_calc_fn in Descriptors._descList:
            descrs.append(descr_calc_fn(mol))

        descrs = np.array(descrs)
        descrs = descrs[USED_200_DESCR]
        rdkit_descriptors.append(descrs)

    return np.array(rdkit_descriptors)


def create_descriptors(
    smiles,
):
    print(f"Preprocess {len(smiles)} molecules")

    # Create cleanded rdkit mol objects
    mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
    print("Cleaned molecules")

    tox_patterns = get_tox_patterns("assets/tox_smarts.json")

    # Create fingerprints and descriptors
    ecfps = create_ecfp_fps(mols, radius=3, fpsize=8192)
    print("Created ECFP fingerprints")

    tox = create_tox_features(mols, tox_patterns)
    print("Created Tox features")

    maccs = create_maccs_keys(mols)
    print("Created MACCS keys")

    rdkit_descrs = create_rdkit_descriptors(mols)
    print("Created RDKit descriptors")

    features = np.concatenate((ecfps, tox, maccs, rdkit_descrs), axis=1)
    return features, clean_mol_mask


def fill(features, mask, value=np.nan):
    n_mols = len(mask)
    n_features = features.shape[1]

    data = np.zeros(shape=(n_mols, n_features))
    data.fill(value)
    data[~mask] = features
    return data


def preprocess_tox21():

    splits = ["train", "validation"]
    ds = load_dataset("tschouis/tox21", token=HF_TOKEN)

    all_features, all_labels, all_split = [], [], []

    for split in splits:

        print(f"Preprocess {split} molecules")
        smiles = list(ds[split]["smiles"])

        features, mol_mask = create_descriptors(
            smiles,
        )
        print(f"Created {features.shape[1]} descriptors for {len(smiles)} molecules.")
        print(f"{len(mol_mask) - sum(mol_mask)} molecules removed during cleaning.")

        labels = []
        for task in TASKS:
            datasplit = ds[split].to_pandas() if args.use_hf else ds[split]
            labels.append(datasplit[task].to_numpy())
        labels = np.stack(labels, axis=1)

        all_features.append(features)
        all_labels.append(labels)
        all_split.append([split] * len(smiles))

    save_path = f"{args.save_folder}/tox21_data.npz"
    with open(save_path, "wb") as f:
        np.savez_compressed(
            f,
            features=all_features,
            labels=all_labels,
            splits=all_split,
        )
    print(f"Saved preprocessed data to {save_path}")


if __name__ == "__main__":
    args = parser.parse_args()
    preprocess_tox21()