Spaces:
Sleeping
Sleeping
File size: 7,801 Bytes
87e7d05 9b98ab0 87e7d05 9b98ab0 87e7d05 9b98ab0 87e7d05 9b98ab0 87e7d05 9b98ab0 87e7d05 9b98ab0 87e7d05 9b98ab0 87e7d05 9b98ab0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""
This files includes functions to create molecular descriptors.
As an input it takes a list of SMILES and it outputs a numpy array of descriptors.
"""
import json
import argparse
import numpy as np
from datasets import load_dataset
from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
from rdkit.Chem.rdchem import Mol
from .utils import (
TASKS,
KNOWN_DESCR,
HF_TOKEN,
USED_200_DESCR,
Standardizer,
)
parser = argparse.ArgumentParser(
description="Data preprocessing script for the Tox21 dataset"
)
parser.add_argument(
"--save_folder",
type=str,
default="data/",
)
parser.add_argument(
"--use_hf",
type=int,
default=0,
)
parser.add_argument(
"--tox_smarts_filepath",
type=str,
default="assets/tox_smarts.json",
)
def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
"""This function creates cleaned RDKit mol objects from a list of SMILES.
Args:
smiles (list[str]): list of SMILES
Returns:
list[Mol]: list of cleaned molecules
np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` atindex `i` could not be cleaned and was removed.
"""
sm = Standardizer(canon_taut=True)
clean_mol_mask = list()
mols = list()
for i, smile in enumerate(smiles):
mol = Chem.MolFromSmiles(smile)
standardized_mol, _ = sm.standardize_mol(mol)
is_cleaned = standardized_mol is not None
clean_mol_mask.append(is_cleaned)
if not is_cleaned:
continue
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
mols.append(can_mol)
return mols, np.array(clean_mol_mask)
def create_ecfp_fps(mols: list[Mol], radius=None, fpsize=None) -> np.ndarray:
"""This function ECFP fingerprints for a list of molecules.
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: ECFP fingerprints of molecules
"""
ecfps = list()
kwargs = {}
if not fpsize is None:
kwargs["fpSize"] = fpsize
if not radius is None:
kwargs["radius"] = radius
for mol in mols:
gen = rdFingerprintGenerator.GetMorganGenerator(countSimulation=True, **kwargs)
fp_sparse_vec = gen.GetCountFingerprint(mol)
fp = np.zeros((0,), np.int8)
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
ecfps.append(fp)
return np.array(ecfps)
def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
return np.array(maccs)
def get_tox_patterns(filepath: str):
"""This calculates tox features defined in tox_smarts.json.
Args:
mols: A list of Mol
n_jobs: If >1 multiprocessing is used
"""
# load patterns
with open(filepath) as f:
smarts_list = [s[1] for s in json.load(f)]
# Code does not work for this case
assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0
# Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
# and then use them for all molecules. This gives a huge speedup over existing code.
# a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
all_patterns = []
for smarts in smarts_list:
patterns = [] # list of smarts-patterns
# value for each of the patterns above. Negates the values of the above later.
negations = []
if " AND " in smarts:
smarts = smarts.split(" AND ")
merge_any = False # If an ' AND ' is found all 'subsmarts' have to match
else:
# If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
# This also accumulates smarts where neither ' OR ' nor ' AND ' occur
smarts = smarts.split(" OR ")
merge_any = True
# for all subsmarts check if they are preceded by 'NOT '
for s in smarts:
neg = s.startswith("NOT ")
if neg:
s = s[4:]
patterns.append(Chem.MolFromSmarts(s))
negations.append(neg)
all_patterns.append((patterns, negations, merge_any))
return all_patterns
def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
"""Matches the tox patterns against a molecule. Returns a boolean array"""
tox_data = []
for mol in mols:
mol_features = []
for patts, negations, merge_any in patterns:
matches = [mol.HasSubstructMatch(p) for p in patts]
matches = [m != n for m, n in zip(matches, negations)]
if merge_any:
pres = any(matches)
else:
pres = all(matches)
mol_features.append(pres)
tox_data.append(np.array(mol_features))
return np.array(tox_data)
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
"""This function creates RDKit descriptors for a list of molecules.
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: RDKit descriptors of molecules
"""
rdkit_descriptors = list()
for mol in mols:
descrs = []
for _, descr_calc_fn in Descriptors._descList:
descrs.append(descr_calc_fn(mol))
descrs = np.array(descrs)
descrs = descrs[USED_200_DESCR]
rdkit_descriptors.append(descrs)
return np.array(rdkit_descriptors)
def create_descriptors(
smiles,
):
print(f"Preprocess {len(smiles)} molecules")
# Create cleanded rdkit mol objects
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
print("Cleaned molecules")
tox_patterns = get_tox_patterns("assets/tox_smarts.json")
# Create fingerprints and descriptors
ecfps = create_ecfp_fps(mols, radius=3, fpsize=8192)
print("Created ECFP fingerprints")
tox = create_tox_features(mols, tox_patterns)
print("Created Tox features")
maccs = create_maccs_keys(mols)
print("Created MACCS keys")
rdkit_descrs = create_rdkit_descriptors(mols)
print("Created RDKit descriptors")
features = np.concatenate((ecfps, tox, maccs, rdkit_descrs), axis=1)
return features, clean_mol_mask
def fill(features, mask, value=np.nan):
n_mols = len(mask)
n_features = features.shape[1]
data = np.zeros(shape=(n_mols, n_features))
data.fill(value)
data[~mask] = features
return data
def preprocess_tox21():
splits = ["train", "validation"]
ds = load_dataset("tschouis/tox21", token=HF_TOKEN)
all_features, all_labels, all_split = [], [], []
for split in splits:
print(f"Preprocess {split} molecules")
smiles = list(ds[split]["smiles"])
features, mol_mask = create_descriptors(
smiles,
)
print(f"Created {features.shape[1]} descriptors for {len(smiles)} molecules.")
print(f"{len(mol_mask) - sum(mol_mask)} molecules removed during cleaning.")
labels = []
for task in TASKS:
datasplit = ds[split].to_pandas() if args.use_hf else ds[split]
labels.append(datasplit[task].to_numpy())
labels = np.stack(labels, axis=1)
all_features.append(features)
all_labels.append(labels)
all_split.append([split] * len(smiles))
save_path = f"{args.save_folder}/tox21_data.npz"
with open(save_path, "wb") as f:
np.savez_compressed(
f,
features=all_features,
labels=all_labels,
splits=all_split,
)
print(f"Saved preprocessed data to {save_path}")
if __name__ == "__main__":
args = parser.parse_args()
preprocess_tox21()
|