File size: 2,087 Bytes
87e7d05
 
 
 
 
 
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
 
 
 
 
9b98ab0
87e7d05
 
 
 
 
 
 
 
 
 
9b98ab0
87e7d05
9b98ab0
 
 
87e7d05
 
 
 
 
 
 
 
 
9b98ab0
 
 
 
 
 
 
87e7d05
9b98ab0
 
 
 
 
87e7d05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
This files includes a predict function for the Tox21.
As an input it takes a list of SMILES and it outputs a nested dictionary with
SMILES and target names as keys.
"""

# ---------------------------------------------------------------------------------------
# Dependencies
from collections import defaultdict

import numpy as np

from src.model import Tox21XGBClassifier
from src.preprocess import create_descriptors
from src.utils import TASKS

# ---------------------------------------------------------------------------------------


def predict(smiles_list: list[str]) -> dict[str, dict[str, float]]:
    """Applies the classifier to a list of SMILES strings. Returns prediction=0.5 for
    any molecule that could not be cleaned.

    Args:
        smiles_list (list[str]): list of SMILES strings

    Returns:
        dict: nested prediction dictionary, following {'<smiles>': {'<target>': <pred>}}
    """
    print(f"Received {len(smiles_list)} SMILES strings")
    # preprocessing pipeline
    features, is_clean = create_descriptors(smiles_list)
    print(f"Created {features.shape[1]} descriptors for the molecules.")
    # print(
    #     f"{len(mol_mask) - sum(mol_mask)} molecules removed during cleaning. All predictions for these will be set to 0.0."
    # )

    # setup model
    model = Tox21XGBClassifier(seed=42)
    model_dir = "assets/"
    model.load_model(model_dir)
    print(f"Loaded model and feature processors from {model_dir}")

    # make predictions
    predictions = defaultdict(dict)
    preds = []
    for target in TASKS:
        X = features.copy()
        preds = np.empty_like(is_clean, dtype=np.float64)

        preds[~is_clean] = 0.5

        feature_processors = model.feature_processors[target]
        task_features = feature_processors["selector"].transform(X)
        task_features = feature_processors["scaler"].transform(task_features)
        preds[is_clean] = model.predict(target, task_features)
        for smiles, pred in zip(smiles_list, preds):
            predictions[smiles][target] = float(pred)
    return predictions