Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.init as init | |
| import torch.nn.functional as F | |
| try: | |
| from .arch_util import LayerNorm2d | |
| except: | |
| from arch_util import LayerNorm2d | |
| class SimpleGate(nn.Module): | |
| def forward(self, x): | |
| x1, x2 = x.chunk(2, dim=1) | |
| return x1 * x2 | |
| class Adapter(nn.Module): | |
| def __init__(self, c, ffn_channel = None): | |
| super().__init__() | |
| if ffn_channel: | |
| ffn_channel = 2 | |
| else: | |
| ffn_channel = c | |
| self.conv1 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
| self.conv2 = nn.Conv2d(in_channels=ffn_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
| self.depthwise = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) | |
| def forward(self, input): | |
| x = self.conv1(input) + self.depthwise(input) | |
| x = self.conv2(x) | |
| return x | |
| class FreMLP(nn.Module): | |
| def __init__(self, nc, expand = 2): | |
| super(FreMLP, self).__init__() | |
| self.process1 = nn.Sequential( | |
| nn.Conv2d(nc, expand * nc, 1, 1, 0), | |
| nn.LeakyReLU(0.1, inplace=True), | |
| nn.Conv2d(expand * nc, nc, 1, 1, 0)) | |
| def forward(self, x): | |
| _, _, H, W = x.shape | |
| x_freq = torch.fft.rfft2(x, norm='backward') | |
| mag = torch.abs(x_freq) | |
| pha = torch.angle(x_freq) | |
| mag = self.process1(mag) | |
| real = mag * torch.cos(pha) | |
| imag = mag * torch.sin(pha) | |
| x_out = torch.complex(real, imag) | |
| x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward') | |
| return x_out | |
| class Branch(nn.Module): | |
| ''' | |
| Branch that lasts lonly the dilated convolutions | |
| ''' | |
| def __init__(self, c, DW_Expand, dilation = 1): | |
| super().__init__() | |
| self.dw_channel = DW_Expand * c | |
| self.branch = nn.Sequential( | |
| nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel, | |
| bias=True, dilation = dilation) # the dconv | |
| ) | |
| def forward(self, input): | |
| return self.branch(input) | |
| class DBlock(nn.Module): | |
| ''' | |
| Change this block using Branch | |
| ''' | |
| def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False): | |
| super().__init__() | |
| #we define the 2 branches | |
| self.dw_channel = DW_Expand * c | |
| self.conv1 = nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
| self.extra_conv = nn.Conv2d(self.dw_channel, self.dw_channel, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity() #optional extra dw | |
| self.branches = nn.ModuleList() | |
| for dilation in dilations: | |
| self.branches.append(Branch(self.dw_channel, DW_Expand = 1, dilation = dilation)) | |
| assert len(dilations) == len(self.branches) | |
| self.dw_channel = DW_Expand * c | |
| self.sca = nn.Sequential( | |
| nn.AdaptiveAvgPool2d(1), | |
| nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1, | |
| groups=1, bias=True, dilation = 1), | |
| ) | |
| self.sg1 = SimpleGate() | |
| self.sg2 = SimpleGate() | |
| self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
| ffn_channel = FFN_Expand * c | |
| self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
| self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
| self.norm1 = LayerNorm2d(c) | |
| self.norm2 = LayerNorm2d(c) | |
| self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
| self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
| # self.adapter = Adapter(c, ffn_channel=None) | |
| # self.use_adapters = False | |
| # def set_use_adapters(self, use_adapters): | |
| # self.use_adapters = use_adapters | |
| def forward(self, inp, adapter = None): | |
| y = inp | |
| x = self.norm1(inp) | |
| # x = self.conv1(self.extra_conv(x)) | |
| x = self.extra_conv(self.conv1(x)) | |
| z = 0 | |
| for branch in self.branches: | |
| z += branch(x) | |
| z = self.sg1(z) | |
| x = self.sca(z) * z | |
| x = self.conv3(x) | |
| y = inp + self.beta * x | |
| #second step | |
| x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W] | |
| x = self.sg2(x) # size [B, C, H, W] | |
| x = self.conv5(x) # size [B, C, H, W] | |
| x = y + x * self.gamma | |
| # if self.use_adapters: | |
| # return self.adapter(x) | |
| # else: | |
| return x | |
| class EBlock(nn.Module): | |
| ''' | |
| Change this block using Branch | |
| ''' | |
| def __init__(self, c, DW_Expand=2, dilations = [1], extra_depth_wise = False): | |
| super().__init__() | |
| #we define the 2 branches | |
| self.dw_channel = DW_Expand * c | |
| self.extra_conv = nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity() #optional extra dw | |
| self.conv1 = nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
| self.branches = nn.ModuleList() | |
| for dilation in dilations: | |
| self.branches.append(Branch(c, DW_Expand, dilation = dilation)) | |
| assert len(dilations) == len(self.branches) | |
| self.dw_channel = DW_Expand * c | |
| self.sca = nn.Sequential( | |
| nn.AdaptiveAvgPool2d(1), | |
| nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1, | |
| groups=1, bias=True, dilation = 1), | |
| ) | |
| self.sg1 = SimpleGate() | |
| self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1) | |
| # second step | |
| self.norm1 = LayerNorm2d(c) | |
| self.norm2 = LayerNorm2d(c) | |
| self.freq = FreMLP(nc = c, expand=2) | |
| self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
| self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
| # self.adapter = Adapter(c, ffn_channel=None) | |
| # self.use_adapters = False | |
| # def set_use_adapters(self, use_adapters): | |
| # self.use_adapters = use_adapters | |
| def forward(self, inp): | |
| y = inp | |
| x = self.norm1(inp) | |
| x = self.conv1(self.extra_conv(x)) | |
| z = 0 | |
| for branch in self.branches: | |
| z += branch(x) | |
| z = self.sg1(z) | |
| x = self.sca(z) * z | |
| x = self.conv3(x) | |
| y = inp + self.beta * x | |
| #second step | |
| x_step2 = self.norm2(y) # size [B, 2*C, H, W] | |
| x_freq = self.freq(x_step2) # size [B, C, H, W] | |
| x = y * x_freq | |
| x = y + x * self.gamma | |
| # if self.use_adapters: | |
| # return self.adapter(x) | |
| # else: | |
| return x | |
| #---------------------------------------------------------------------------------------------- | |
| if __name__ == '__main__': | |
| img_channel = 3 | |
| width = 32 | |
| enc_blks = [1, 2, 3] | |
| middle_blk_num = 3 | |
| dec_blks = [3, 1, 1] | |
| dilations = [1, 4, 9] | |
| extra_depth_wise = True | |
| # net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, | |
| # enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) | |
| net = EBlock(c = img_channel, | |
| dilations = dilations, | |
| extra_depth_wise=extra_depth_wise) | |
| inp_shape = (3, 256, 256) | |
| from ptflops import get_model_complexity_info | |
| macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) | |
| output = net(torch.randn((4, 3, 256, 256))) | |
| # print('Values of EBlock:') | |
| print(macs, params) | |
| channels = 128 | |
| resol = 32 | |
| ksize = 5 | |
| # net = FAC(channels=channels, ksize=ksize) | |
| # inp_shape = (channels, resol, resol) | |
| # macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True) | |
| # print('Values of FAC:') | |
| # print(macs, params) | |