Spaces:
Sleeping
Sleeping
Muhammed Ömer ERKOÇ
commited on
Commit
·
fb36382
1
Parent(s):
37f7a06
Add app.py, requirements.txt, examples and model files 2
Browse files- lib/pvt.py +223 -0
- lib/pvtv2.py +436 -0
lib/pvt.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from lib.pvtv2 import pvt_v2_b2
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class BasicConv2d(nn.Module):
|
| 12 |
+
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
|
| 13 |
+
super(BasicConv2d, self).__init__()
|
| 14 |
+
|
| 15 |
+
self.conv = nn.Conv2d(in_planes, out_planes,
|
| 16 |
+
kernel_size=kernel_size, stride=stride,
|
| 17 |
+
padding=padding, dilation=dilation, bias=False)
|
| 18 |
+
self.bn = nn.BatchNorm2d(out_planes)
|
| 19 |
+
self.relu = nn.ReLU(inplace=True)
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
x = self.conv(x)
|
| 23 |
+
x = self.bn(x)
|
| 24 |
+
return x
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class CFM(nn.Module):
|
| 28 |
+
def __init__(self, channel):
|
| 29 |
+
super(CFM, self).__init__()
|
| 30 |
+
self.relu = nn.ReLU(True)
|
| 31 |
+
|
| 32 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
| 33 |
+
self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1)
|
| 34 |
+
self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1)
|
| 35 |
+
self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1)
|
| 36 |
+
self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1)
|
| 37 |
+
self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
|
| 38 |
+
|
| 39 |
+
self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
|
| 40 |
+
self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1)
|
| 41 |
+
self.conv4 = BasicConv2d(3 * channel, channel, 3, padding=1)
|
| 42 |
+
|
| 43 |
+
def forward(self, x1, x2, x3):
|
| 44 |
+
x1_1 = x1
|
| 45 |
+
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2
|
| 46 |
+
x3_1 = self.conv_upsample2(self.upsample(self.upsample(x1))) \
|
| 47 |
+
* self.conv_upsample3(self.upsample(x2)) * x3
|
| 48 |
+
|
| 49 |
+
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1)
|
| 50 |
+
x2_2 = self.conv_concat2(x2_2)
|
| 51 |
+
|
| 52 |
+
x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1)
|
| 53 |
+
x3_2 = self.conv_concat3(x3_2)
|
| 54 |
+
|
| 55 |
+
x1 = self.conv4(x3_2)
|
| 56 |
+
|
| 57 |
+
return x1
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class GCN(nn.Module):
|
| 63 |
+
def __init__(self, num_state, num_node, bias=False):
|
| 64 |
+
super(GCN, self).__init__()
|
| 65 |
+
self.conv1 = nn.Conv1d(num_node, num_node, kernel_size=1)
|
| 66 |
+
self.relu = nn.ReLU(inplace=True)
|
| 67 |
+
self.conv2 = nn.Conv1d(num_state, num_state, kernel_size=1, bias=bias)
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
h = self.conv1(x.permute(0, 2, 1)).permute(0, 2, 1)
|
| 71 |
+
h = h - x
|
| 72 |
+
h = self.relu(self.conv2(h))
|
| 73 |
+
return h
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class SAM(nn.Module):
|
| 77 |
+
def __init__(self, num_in=32, plane_mid=16, mids=4, normalize=False):
|
| 78 |
+
super(SAM, self).__init__()
|
| 79 |
+
|
| 80 |
+
self.normalize = normalize
|
| 81 |
+
self.num_s = int(plane_mid)
|
| 82 |
+
self.num_n = (mids) * (mids)
|
| 83 |
+
self.priors = nn.AdaptiveAvgPool2d(output_size=(mids + 2, mids + 2))
|
| 84 |
+
|
| 85 |
+
self.conv_state = nn.Conv2d(num_in, self.num_s, kernel_size=1)
|
| 86 |
+
self.conv_proj = nn.Conv2d(num_in, self.num_s, kernel_size=1)
|
| 87 |
+
self.gcn = GCN(num_state=self.num_s, num_node=self.num_n)
|
| 88 |
+
self.conv_extend = nn.Conv2d(self.num_s, num_in, kernel_size=1, bias=False)
|
| 89 |
+
|
| 90 |
+
def forward(self, x, edge):
|
| 91 |
+
edge = F.upsample(edge, (x.size()[-2], x.size()[-1]))
|
| 92 |
+
|
| 93 |
+
n, c, h, w = x.size()
|
| 94 |
+
edge = torch.nn.functional.softmax(edge, dim=1)[:, 1, :, :].unsqueeze(1)
|
| 95 |
+
|
| 96 |
+
x_state_reshaped = self.conv_state(x).view(n, self.num_s, -1)
|
| 97 |
+
x_proj = self.conv_proj(x)
|
| 98 |
+
x_mask = x_proj * edge
|
| 99 |
+
|
| 100 |
+
x_anchor1 = self.priors(x_mask)
|
| 101 |
+
x_anchor2 = self.priors(x_mask)[:, :, 1:-1, 1:-1].reshape(n, self.num_s, -1)
|
| 102 |
+
x_anchor = self.priors(x_mask)[:, :, 1:-1, 1:-1].reshape(n, self.num_s, -1)
|
| 103 |
+
|
| 104 |
+
x_proj_reshaped = torch.matmul(x_anchor.permute(0, 2, 1), x_proj.reshape(n, self.num_s, -1))
|
| 105 |
+
x_proj_reshaped = torch.nn.functional.softmax(x_proj_reshaped, dim=1)
|
| 106 |
+
|
| 107 |
+
x_rproj_reshaped = x_proj_reshaped
|
| 108 |
+
|
| 109 |
+
x_n_state = torch.matmul(x_state_reshaped, x_proj_reshaped.permute(0, 2, 1))
|
| 110 |
+
if self.normalize:
|
| 111 |
+
x_n_state = x_n_state * (1. / x_state_reshaped.size(2))
|
| 112 |
+
x_n_rel = self.gcn(x_n_state)
|
| 113 |
+
|
| 114 |
+
x_state_reshaped = torch.matmul(x_n_rel, x_rproj_reshaped)
|
| 115 |
+
x_state = x_state_reshaped.view(n, self.num_s, *x.size()[2:])
|
| 116 |
+
out = x + (self.conv_extend(x_state))
|
| 117 |
+
|
| 118 |
+
return out
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class ChannelAttention(nn.Module):
|
| 122 |
+
def __init__(self, in_planes, ratio=16):
|
| 123 |
+
super(ChannelAttention, self).__init__()
|
| 124 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 125 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
| 126 |
+
|
| 127 |
+
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
|
| 128 |
+
self.relu1 = nn.ReLU()
|
| 129 |
+
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
|
| 130 |
+
|
| 131 |
+
self.sigmoid = nn.Sigmoid()
|
| 132 |
+
|
| 133 |
+
def forward(self, x):
|
| 134 |
+
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
|
| 135 |
+
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
|
| 136 |
+
out = avg_out + max_out
|
| 137 |
+
return self.sigmoid(out)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class SpatialAttention(nn.Module):
|
| 141 |
+
def __init__(self, kernel_size=7):
|
| 142 |
+
super(SpatialAttention, self).__init__()
|
| 143 |
+
|
| 144 |
+
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
| 145 |
+
padding = 3 if kernel_size == 7 else 1
|
| 146 |
+
|
| 147 |
+
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
| 148 |
+
self.sigmoid = nn.Sigmoid()
|
| 149 |
+
|
| 150 |
+
def forward(self, x):
|
| 151 |
+
avg_out = torch.mean(x, dim=1, keepdim=True)
|
| 152 |
+
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
| 153 |
+
x = torch.cat([avg_out, max_out], dim=1)
|
| 154 |
+
x = self.conv1(x)
|
| 155 |
+
return self.sigmoid(x)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class PolypPVT(nn.Module):
|
| 159 |
+
def __init__(self, channel=32):
|
| 160 |
+
super(PolypPVT, self).__init__()
|
| 161 |
+
|
| 162 |
+
self.backbone = pvt_v2_b2() # [64, 128, 320, 512]
|
| 163 |
+
path = './pretrained_pth/pvt_v2_b2.pth'
|
| 164 |
+
save_model = torch.load(path)
|
| 165 |
+
model_dict = self.backbone.state_dict()
|
| 166 |
+
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
|
| 167 |
+
model_dict.update(state_dict)
|
| 168 |
+
self.backbone.load_state_dict(model_dict)
|
| 169 |
+
|
| 170 |
+
self.Translayer2_0 = BasicConv2d(64, channel, 1)
|
| 171 |
+
self.Translayer2_1 = BasicConv2d(128, channel, 1)
|
| 172 |
+
self.Translayer3_1 = BasicConv2d(320, channel, 1)
|
| 173 |
+
self.Translayer4_1 = BasicConv2d(512, channel, 1)
|
| 174 |
+
|
| 175 |
+
self.CFM = CFM(channel)
|
| 176 |
+
self.ca = ChannelAttention(64)
|
| 177 |
+
self.sa = SpatialAttention()
|
| 178 |
+
self.SAM = SAM()
|
| 179 |
+
|
| 180 |
+
self.down05 = nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=True)
|
| 181 |
+
self.out_SAM = nn.Conv2d(channel, 1, 1)
|
| 182 |
+
self.out_CFM = nn.Conv2d(channel, 1, 1)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def forward(self, x):
|
| 186 |
+
|
| 187 |
+
# backbone
|
| 188 |
+
pvt = self.backbone(x)
|
| 189 |
+
x1 = pvt[0]
|
| 190 |
+
x2 = pvt[1]
|
| 191 |
+
x3 = pvt[2]
|
| 192 |
+
x4 = pvt[3]
|
| 193 |
+
|
| 194 |
+
# CIM
|
| 195 |
+
x1 = self.ca(x1) * x1 # channel attention
|
| 196 |
+
cim_feature = self.sa(x1) * x1 # spatial attention
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# CFM
|
| 200 |
+
x2_t = self.Translayer2_1(x2)
|
| 201 |
+
x3_t = self.Translayer3_1(x3)
|
| 202 |
+
x4_t = self.Translayer4_1(x4)
|
| 203 |
+
cfm_feature = self.CFM(x4_t, x3_t, x2_t)
|
| 204 |
+
|
| 205 |
+
# SAM
|
| 206 |
+
T2 = self.Translayer2_0(cim_feature)
|
| 207 |
+
T2 = self.down05(T2)
|
| 208 |
+
sam_feature = self.SAM(cfm_feature, T2)
|
| 209 |
+
|
| 210 |
+
prediction1 = self.out_CFM(cfm_feature)
|
| 211 |
+
prediction2 = self.out_SAM(sam_feature)
|
| 212 |
+
|
| 213 |
+
prediction1_8 = F.interpolate(prediction1, scale_factor=8, mode='bilinear')
|
| 214 |
+
prediction2_8 = F.interpolate(prediction2, scale_factor=8, mode='bilinear')
|
| 215 |
+
return prediction1_8, prediction2_8
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
if __name__ == '__main__':
|
| 219 |
+
model = PolypPVT().cuda()
|
| 220 |
+
input_tensor = torch.randn(1, 3, 352, 352).cuda()
|
| 221 |
+
|
| 222 |
+
prediction1, prediction2 = model(input_tensor)
|
| 223 |
+
print(prediction1.size(), prediction2.size())
|
lib/pvtv2.py
ADDED
|
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from functools import partial
|
| 5 |
+
|
| 6 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
| 7 |
+
from timm.models.registry import register_model
|
| 8 |
+
from timm.models.vision_transformer import _cfg
|
| 9 |
+
from timm.models.registry import register_model
|
| 10 |
+
|
| 11 |
+
import math
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Mlp(nn.Module):
|
| 15 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 16 |
+
super().__init__()
|
| 17 |
+
out_features = out_features or in_features
|
| 18 |
+
hidden_features = hidden_features or in_features
|
| 19 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 20 |
+
self.dwconv = DWConv(hidden_features)
|
| 21 |
+
self.act = act_layer()
|
| 22 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 23 |
+
self.drop = nn.Dropout(drop)
|
| 24 |
+
|
| 25 |
+
self.apply(self._init_weights)
|
| 26 |
+
|
| 27 |
+
def _init_weights(self, m):
|
| 28 |
+
if isinstance(m, nn.Linear):
|
| 29 |
+
trunc_normal_(m.weight, std=.02)
|
| 30 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 31 |
+
nn.init.constant_(m.bias, 0)
|
| 32 |
+
elif isinstance(m, nn.LayerNorm):
|
| 33 |
+
nn.init.constant_(m.bias, 0)
|
| 34 |
+
nn.init.constant_(m.weight, 1.0)
|
| 35 |
+
elif isinstance(m, nn.Conv2d):
|
| 36 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 37 |
+
fan_out //= m.groups
|
| 38 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 39 |
+
if m.bias is not None:
|
| 40 |
+
m.bias.data.zero_()
|
| 41 |
+
|
| 42 |
+
def forward(self, x, H, W):
|
| 43 |
+
x = self.fc1(x)
|
| 44 |
+
x = self.dwconv(x, H, W)
|
| 45 |
+
x = self.act(x)
|
| 46 |
+
x = self.drop(x)
|
| 47 |
+
x = self.fc2(x)
|
| 48 |
+
x = self.drop(x)
|
| 49 |
+
return x
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Attention(nn.Module):
|
| 53 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
| 54 |
+
super().__init__()
|
| 55 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
| 56 |
+
|
| 57 |
+
self.dim = dim
|
| 58 |
+
self.num_heads = num_heads
|
| 59 |
+
head_dim = dim // num_heads
|
| 60 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 61 |
+
|
| 62 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
| 63 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
| 64 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 65 |
+
self.proj = nn.Linear(dim, dim)
|
| 66 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 67 |
+
|
| 68 |
+
self.sr_ratio = sr_ratio
|
| 69 |
+
if sr_ratio > 1:
|
| 70 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
| 71 |
+
self.norm = nn.LayerNorm(dim)
|
| 72 |
+
|
| 73 |
+
self.apply(self._init_weights)
|
| 74 |
+
|
| 75 |
+
def _init_weights(self, m):
|
| 76 |
+
if isinstance(m, nn.Linear):
|
| 77 |
+
trunc_normal_(m.weight, std=.02)
|
| 78 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 79 |
+
nn.init.constant_(m.bias, 0)
|
| 80 |
+
elif isinstance(m, nn.LayerNorm):
|
| 81 |
+
nn.init.constant_(m.bias, 0)
|
| 82 |
+
nn.init.constant_(m.weight, 1.0)
|
| 83 |
+
elif isinstance(m, nn.Conv2d):
|
| 84 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 85 |
+
fan_out //= m.groups
|
| 86 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 87 |
+
if m.bias is not None:
|
| 88 |
+
m.bias.data.zero_()
|
| 89 |
+
|
| 90 |
+
def forward(self, x, H, W):
|
| 91 |
+
B, N, C = x.shape
|
| 92 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 93 |
+
|
| 94 |
+
if self.sr_ratio > 1:
|
| 95 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
| 96 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
| 97 |
+
x_ = self.norm(x_)
|
| 98 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 99 |
+
else:
|
| 100 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 101 |
+
k, v = kv[0], kv[1]
|
| 102 |
+
|
| 103 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 104 |
+
attn = attn.softmax(dim=-1)
|
| 105 |
+
attn = self.attn_drop(attn)
|
| 106 |
+
|
| 107 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 108 |
+
x = self.proj(x)
|
| 109 |
+
x = self.proj_drop(x)
|
| 110 |
+
|
| 111 |
+
return x
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class Block(nn.Module):
|
| 115 |
+
|
| 116 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 117 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
| 118 |
+
super().__init__()
|
| 119 |
+
self.norm1 = norm_layer(dim)
|
| 120 |
+
self.attn = Attention(
|
| 121 |
+
dim,
|
| 122 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 123 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
| 124 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 125 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 126 |
+
self.norm2 = norm_layer(dim)
|
| 127 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 128 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 129 |
+
|
| 130 |
+
self.apply(self._init_weights)
|
| 131 |
+
|
| 132 |
+
def _init_weights(self, m):
|
| 133 |
+
if isinstance(m, nn.Linear):
|
| 134 |
+
trunc_normal_(m.weight, std=.02)
|
| 135 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 136 |
+
nn.init.constant_(m.bias, 0)
|
| 137 |
+
elif isinstance(m, nn.LayerNorm):
|
| 138 |
+
nn.init.constant_(m.bias, 0)
|
| 139 |
+
nn.init.constant_(m.weight, 1.0)
|
| 140 |
+
elif isinstance(m, nn.Conv2d):
|
| 141 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 142 |
+
fan_out //= m.groups
|
| 143 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 144 |
+
if m.bias is not None:
|
| 145 |
+
m.bias.data.zero_()
|
| 146 |
+
|
| 147 |
+
def forward(self, x, H, W):
|
| 148 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
| 149 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
| 150 |
+
|
| 151 |
+
return x
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class OverlapPatchEmbed(nn.Module):
|
| 155 |
+
""" Image to Patch Embedding
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
| 159 |
+
super().__init__()
|
| 160 |
+
img_size = to_2tuple(img_size)
|
| 161 |
+
patch_size = to_2tuple(patch_size)
|
| 162 |
+
|
| 163 |
+
self.img_size = img_size
|
| 164 |
+
self.patch_size = patch_size
|
| 165 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
| 166 |
+
self.num_patches = self.H * self.W
|
| 167 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
| 168 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
| 169 |
+
self.norm = nn.LayerNorm(embed_dim)
|
| 170 |
+
|
| 171 |
+
self.apply(self._init_weights)
|
| 172 |
+
|
| 173 |
+
def _init_weights(self, m):
|
| 174 |
+
if isinstance(m, nn.Linear):
|
| 175 |
+
trunc_normal_(m.weight, std=.02)
|
| 176 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 177 |
+
nn.init.constant_(m.bias, 0)
|
| 178 |
+
elif isinstance(m, nn.LayerNorm):
|
| 179 |
+
nn.init.constant_(m.bias, 0)
|
| 180 |
+
nn.init.constant_(m.weight, 1.0)
|
| 181 |
+
elif isinstance(m, nn.Conv2d):
|
| 182 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 183 |
+
fan_out //= m.groups
|
| 184 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 185 |
+
if m.bias is not None:
|
| 186 |
+
m.bias.data.zero_()
|
| 187 |
+
|
| 188 |
+
def forward(self, x):
|
| 189 |
+
x = self.proj(x)
|
| 190 |
+
_, _, H, W = x.shape
|
| 191 |
+
x = x.flatten(2).transpose(1, 2)
|
| 192 |
+
x = self.norm(x)
|
| 193 |
+
|
| 194 |
+
return x, H, W
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class PyramidVisionTransformerImpr(nn.Module):
|
| 198 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
| 199 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
| 200 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
| 201 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
| 202 |
+
super().__init__()
|
| 203 |
+
self.num_classes = num_classes
|
| 204 |
+
self.depths = depths
|
| 205 |
+
|
| 206 |
+
# patch_embed
|
| 207 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
|
| 208 |
+
embed_dim=embed_dims[0])
|
| 209 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
| 210 |
+
embed_dim=embed_dims[1])
|
| 211 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
| 212 |
+
embed_dim=embed_dims[2])
|
| 213 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
|
| 214 |
+
embed_dim=embed_dims[3])
|
| 215 |
+
|
| 216 |
+
# transformer encoder
|
| 217 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
| 218 |
+
cur = 0
|
| 219 |
+
self.block1 = nn.ModuleList([Block(
|
| 220 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 221 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 222 |
+
sr_ratio=sr_ratios[0])
|
| 223 |
+
for i in range(depths[0])])
|
| 224 |
+
self.norm1 = norm_layer(embed_dims[0])
|
| 225 |
+
|
| 226 |
+
cur += depths[0]
|
| 227 |
+
self.block2 = nn.ModuleList([Block(
|
| 228 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 229 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 230 |
+
sr_ratio=sr_ratios[1])
|
| 231 |
+
for i in range(depths[1])])
|
| 232 |
+
self.norm2 = norm_layer(embed_dims[1])
|
| 233 |
+
|
| 234 |
+
cur += depths[1]
|
| 235 |
+
self.block3 = nn.ModuleList([Block(
|
| 236 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 237 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 238 |
+
sr_ratio=sr_ratios[2])
|
| 239 |
+
for i in range(depths[2])])
|
| 240 |
+
self.norm3 = norm_layer(embed_dims[2])
|
| 241 |
+
|
| 242 |
+
cur += depths[2]
|
| 243 |
+
self.block4 = nn.ModuleList([Block(
|
| 244 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 245 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 246 |
+
sr_ratio=sr_ratios[3])
|
| 247 |
+
for i in range(depths[3])])
|
| 248 |
+
self.norm4 = norm_layer(embed_dims[3])
|
| 249 |
+
|
| 250 |
+
# classification head
|
| 251 |
+
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
| 252 |
+
|
| 253 |
+
self.apply(self._init_weights)
|
| 254 |
+
|
| 255 |
+
def _init_weights(self, m):
|
| 256 |
+
if isinstance(m, nn.Linear):
|
| 257 |
+
trunc_normal_(m.weight, std=.02)
|
| 258 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 259 |
+
nn.init.constant_(m.bias, 0)
|
| 260 |
+
elif isinstance(m, nn.LayerNorm):
|
| 261 |
+
nn.init.constant_(m.bias, 0)
|
| 262 |
+
nn.init.constant_(m.weight, 1.0)
|
| 263 |
+
elif isinstance(m, nn.Conv2d):
|
| 264 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 265 |
+
fan_out //= m.groups
|
| 266 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 267 |
+
if m.bias is not None:
|
| 268 |
+
m.bias.data.zero_()
|
| 269 |
+
|
| 270 |
+
def init_weights(self, pretrained=None):
|
| 271 |
+
if isinstance(pretrained, str):
|
| 272 |
+
logger = 1
|
| 273 |
+
#load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
|
| 274 |
+
|
| 275 |
+
def reset_drop_path(self, drop_path_rate):
|
| 276 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
| 277 |
+
cur = 0
|
| 278 |
+
for i in range(self.depths[0]):
|
| 279 |
+
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
| 280 |
+
|
| 281 |
+
cur += self.depths[0]
|
| 282 |
+
for i in range(self.depths[1]):
|
| 283 |
+
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
| 284 |
+
|
| 285 |
+
cur += self.depths[1]
|
| 286 |
+
for i in range(self.depths[2]):
|
| 287 |
+
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
| 288 |
+
|
| 289 |
+
cur += self.depths[2]
|
| 290 |
+
for i in range(self.depths[3]):
|
| 291 |
+
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
| 292 |
+
|
| 293 |
+
def freeze_patch_emb(self):
|
| 294 |
+
self.patch_embed1.requires_grad = False
|
| 295 |
+
|
| 296 |
+
@torch.jit.ignore
|
| 297 |
+
def no_weight_decay(self):
|
| 298 |
+
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
| 299 |
+
|
| 300 |
+
def get_classifier(self):
|
| 301 |
+
return self.head
|
| 302 |
+
|
| 303 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
| 304 |
+
self.num_classes = num_classes
|
| 305 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 306 |
+
|
| 307 |
+
# def _get_pos_embed(self, pos_embed, patch_embed, H, W):
|
| 308 |
+
# if H * W == self.patch_embed1.num_patches:
|
| 309 |
+
# return pos_embed
|
| 310 |
+
# else:
|
| 311 |
+
# return F.interpolate(
|
| 312 |
+
# pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
|
| 313 |
+
# size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)
|
| 314 |
+
|
| 315 |
+
def forward_features(self, x):
|
| 316 |
+
B = x.shape[0]
|
| 317 |
+
outs = []
|
| 318 |
+
|
| 319 |
+
# stage 1
|
| 320 |
+
x, H, W = self.patch_embed1(x)
|
| 321 |
+
for i, blk in enumerate(self.block1):
|
| 322 |
+
x = blk(x, H, W)
|
| 323 |
+
x = self.norm1(x)
|
| 324 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 325 |
+
outs.append(x)
|
| 326 |
+
|
| 327 |
+
# stage 2
|
| 328 |
+
x, H, W = self.patch_embed2(x)
|
| 329 |
+
for i, blk in enumerate(self.block2):
|
| 330 |
+
x = blk(x, H, W)
|
| 331 |
+
x = self.norm2(x)
|
| 332 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 333 |
+
outs.append(x)
|
| 334 |
+
|
| 335 |
+
# stage 3
|
| 336 |
+
x, H, W = self.patch_embed3(x)
|
| 337 |
+
for i, blk in enumerate(self.block3):
|
| 338 |
+
x = blk(x, H, W)
|
| 339 |
+
x = self.norm3(x)
|
| 340 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 341 |
+
outs.append(x)
|
| 342 |
+
|
| 343 |
+
# stage 4
|
| 344 |
+
x, H, W = self.patch_embed4(x)
|
| 345 |
+
for i, blk in enumerate(self.block4):
|
| 346 |
+
x = blk(x, H, W)
|
| 347 |
+
x = self.norm4(x)
|
| 348 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 349 |
+
outs.append(x)
|
| 350 |
+
|
| 351 |
+
return outs
|
| 352 |
+
|
| 353 |
+
# return x.mean(dim=1)
|
| 354 |
+
|
| 355 |
+
def forward(self, x):
|
| 356 |
+
x = self.forward_features(x)
|
| 357 |
+
# x = self.head(x)
|
| 358 |
+
|
| 359 |
+
return x
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class DWConv(nn.Module):
|
| 363 |
+
def __init__(self, dim=768):
|
| 364 |
+
super(DWConv, self).__init__()
|
| 365 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
| 366 |
+
|
| 367 |
+
def forward(self, x, H, W):
|
| 368 |
+
B, N, C = x.shape
|
| 369 |
+
x = x.transpose(1, 2).view(B, C, H, W)
|
| 370 |
+
x = self.dwconv(x)
|
| 371 |
+
x = x.flatten(2).transpose(1, 2)
|
| 372 |
+
|
| 373 |
+
return x
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def _conv_filter(state_dict, patch_size=16):
|
| 377 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
| 378 |
+
out_dict = {}
|
| 379 |
+
for k, v in state_dict.items():
|
| 380 |
+
if 'patch_embed.proj.weight' in k:
|
| 381 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
| 382 |
+
out_dict[k] = v
|
| 383 |
+
|
| 384 |
+
return out_dict
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
@register_model
|
| 388 |
+
class pvt_v2_b0(PyramidVisionTransformerImpr):
|
| 389 |
+
def __init__(self, **kwargs):
|
| 390 |
+
super(pvt_v2_b0, self).__init__(
|
| 391 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 392 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
| 393 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
@register_model
|
| 398 |
+
class pvt_v2_b1(PyramidVisionTransformerImpr):
|
| 399 |
+
def __init__(self, **kwargs):
|
| 400 |
+
super(pvt_v2_b1, self).__init__(
|
| 401 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 402 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
| 403 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 404 |
+
|
| 405 |
+
@register_model
|
| 406 |
+
class pvt_v2_b2(PyramidVisionTransformerImpr):
|
| 407 |
+
def __init__(self, **kwargs):
|
| 408 |
+
super(pvt_v2_b2, self).__init__(
|
| 409 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 410 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
| 411 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 412 |
+
|
| 413 |
+
@register_model
|
| 414 |
+
class pvt_v2_b3(PyramidVisionTransformerImpr):
|
| 415 |
+
def __init__(self, **kwargs):
|
| 416 |
+
super(pvt_v2_b3, self).__init__(
|
| 417 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 418 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
| 419 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 420 |
+
|
| 421 |
+
@register_model
|
| 422 |
+
class pvt_v2_b4(PyramidVisionTransformerImpr):
|
| 423 |
+
def __init__(self, **kwargs):
|
| 424 |
+
super(pvt_v2_b4, self).__init__(
|
| 425 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 426 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
| 427 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
@register_model
|
| 431 |
+
class pvt_v2_b5(PyramidVisionTransformerImpr):
|
| 432 |
+
def __init__(self, **kwargs):
|
| 433 |
+
super(pvt_v2_b5, self).__init__(
|
| 434 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 435 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
| 436 |
+
drop_rate=0.0, drop_path_rate=0.1)
|