import torch import torch.nn.functional as F import numpy as np import cv2 from PIL import Image import gradio as gr from torchvision import transforms from lib.pvt import PolypPVT # senin repo'daki model # ---------------------- # Model yükleme # ---------------------- pth_path = "polyp_segmentation\weights\PolypPVT.pth" model = PolypPVT() model.load_state_dict(torch.load(pth_path, map_location="cuda" if torch.cuda.is_available() else "cpu")) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() # ---------------------- # Transform # ---------------------- transform = transforms.Compose([ transforms.Resize((352, 352)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # ---------------------- # Prediction function # ---------------------- def predict(image: Image.Image, mask: Image.Image = None): # Convert and preprocess input input_tensor = transform(image).unsqueeze(0).to(device) with torch.no_grad(): P1, P2 = model(input_tensor) res = F.interpolate(P1 + P2, size=(352, 352), mode="bilinear", align_corners=False) res = res.sigmoid().cpu().numpy().squeeze() res_norm = (res - res.min()) / (res.max() - res.min() + 1e-8) # Predicted mask binary pred_mask = (res_norm > 0.5).astype(np.uint8) # Make colored mask pred_mask_color = cv2.applyColorMap((res_norm * 255).astype(np.uint8), cv2.COLORMAP_JET) pred_mask_color = cv2.cvtColor(pred_mask_color, cv2.COLOR_BGR2RGB) # Overlay on original image_resized = np.array(image.resize((352, 352))) overlay = cv2.addWeighted(image_resized, 0.6, pred_mask_color, 0.4, 0) # If ground truth mask is provided → calculate IOU iou_score = None if mask is not None: mask_resized = mask.convert("L").resize((352, 352)) gt_mask_bin = (np.array(mask_resized) > 127).astype(np.uint8) intersection = np.logical_and(pred_mask, gt_mask_bin).sum() union = np.logical_or(pred_mask, gt_mask_bin).sum() iou_score = intersection / (union + 1e-8) # GT mask to RGB gt_mask_rgb = np.stack([gt_mask_bin * 255]*3, axis=-1) else: gt_mask_rgb = np.zeros_like(image_resized) return ( Image.fromarray(image_resized), # Orijinal Image.fromarray(pred_mask_color), # Tahmin maskesi Image.fromarray(overlay), # Bindirilmiş Image.fromarray(gt_mask_rgb), # Gerçek maske (boş olabilir) f"IOU: {iou_score:.4f}" if iou_score is not None else "No GT mask provided" ) # ---------------------- # Gradio Interface # ---------------------- examples = [ ["examples/image1.jpg", None], ["examples/image2.jpg", None], ["examples/image3.jpg", None], # maskesiz de test edilebilir ] demo = gr.Interface( fn=predict, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Image(type="pil", label="Ground Truth Mask (Optional)", optional=True) ], outputs=[ gr.Image(label="Original"), gr.Image(label="Predicted Mask"), gr.Image(label="Overlay"), gr.Image(label="Ground Truth Mask"), gr.Label(label="IOU Score") ], title="Polyp Segmentation - PolypPVT", description="Upload an endoscopic image to predict polyp segmentation mask. Optionally, provide a ground truth mask to calculate IOU.", examples=examples, ) if __name__ == "__main__": demo.launch()