File size: 14,337 Bytes
05d6d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
05d6d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include "llama-model-saver.h"

#include "gguf.h"

#include "llama.h"
#include "llama-hparams.h"
#include "llama-model.h"
#include "llama-vocab.h"

#include <string>

llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
    gguf_ctx = gguf_init_empty();
}

llama_model_saver::~llama_model_saver() {
    gguf_free(gguf_ctx);
}

void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
    gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
}

void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
    gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
}

void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
    gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
}

void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
    gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
}

void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
    gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
}

[[noreturn]]
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
    GGML_UNUSED(key);
    GGML_UNUSED(value);
    GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
}

template <typename Container>
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
    const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
    GGML_ASSERT(n_values <= value.size());

    if (n_values == 0) {
        return;
    }

    if (per_layer) {
        bool all_values_the_same = true;
        for (size_t i = 1; i < n_values; ++i) {
            if (value[i] != value[0]) {
                all_values_the_same = false;
                break;
            }
        }
        if (all_values_the_same) {
            add_kv(key, value[0]);
            return;
        }
    }

    if (std::is_same<typename Container::value_type, uint8_t>::value) {
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
    } else if (std::is_same<typename Container::value_type, int8_t>::value) {
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
    } else if (std::is_same<typename Container::value_type, uint32_t>::value) {
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
    } else if (std::is_same<typename Container::value_type, int32_t>::value) {
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
    } else if (std::is_same<typename Container::value_type, float>::value) {
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
    } else if (std::is_same<Container, std::string>::value) {
        gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
    } else {
        GGML_ABORT("fatal error");
    }
}

void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
    std::vector<const char *> tmp(value.size());
    for (size_t i = 0; i < value.size(); ++i) {
        tmp[i] = value[i].c_str();
    }
    gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
}

void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
    if (!tensor) {
        return;
    }
    if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
        GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
        return;
    }
    gguf_add_tensor(gguf_ctx, tensor);
}

void llama_model_saver::add_kv_from_model() {
    const llama_hparams & hparams = model.hparams;
    const llama_vocab   & vocab   = model.vocab;

    const int32_t n_vocab = vocab.n_tokens();
    std::vector<std::string> tokens(n_vocab);
    std::vector<float>       scores(n_vocab);
    std::vector<int32_t>     token_types(n_vocab);

    for (int32_t id = 0; id < n_vocab; ++id) {
        const llama_vocab::token_data & token_data = vocab.get_token_data(id);

        tokens[id] = token_data.text;
        scores[id] = token_data.score;

        switch(token_data.attr) {
            case LLAMA_TOKEN_ATTR_UNKNOWN:      token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN;      break;
            case LLAMA_TOKEN_ATTR_UNUSED:       token_types[id] = LLAMA_TOKEN_TYPE_UNUSED;       break;
            case LLAMA_TOKEN_ATTR_NORMAL:       token_types[id] = LLAMA_TOKEN_TYPE_NORMAL;       break;
            case LLAMA_TOKEN_ATTR_CONTROL:      token_types[id] = LLAMA_TOKEN_TYPE_CONTROL;      break;
            case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
            case LLAMA_TOKEN_ATTR_BYTE:         token_types[id] = LLAMA_TOKEN_TYPE_BYTE;         break;
            case LLAMA_TOKEN_ATTR_UNDEFINED:
            default:                            token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED;    break;
        }
    }

    // add_kv(LLM_KV_GENERAL_TYPE,                      ???);
    add_kv(LLM_KV_GENERAL_ARCHITECTURE,              model.arch_name());
    // add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION,      ???);
    // add_kv(LLM_KV_GENERAL_ALIGNMENT,                 ???);
    add_kv(LLM_KV_GENERAL_NAME,                      model.name);
    // add_kv(LLM_KV_GENERAL_AUTHOR,                    ???);
    // add_kv(LLM_KV_GENERAL_VERSION,                   ???);
    // add_kv(LLM_KV_GENERAL_URL,                       ???);
    // add_kv(LLM_KV_GENERAL_DESCRIPTION,               ???);
    // add_kv(LLM_KV_GENERAL_LICENSE,                   ???);
    // add_kv(LLM_KV_GENERAL_SOURCE_URL,                ???);
    // add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO,            ???);

    add_kv(LLM_KV_VOCAB_SIZE,                        vocab.n_tokens());
    add_kv(LLM_KV_CONTEXT_LENGTH,                    hparams.n_ctx_train);
    add_kv(LLM_KV_EMBEDDING_LENGTH,                  hparams.n_embd);
    add_kv(LLM_KV_BLOCK_COUNT,                       hparams.n_layer);
    add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
    add_kv(LLM_KV_FEED_FORWARD_LENGTH,               hparams.n_ff_arr, true);
    add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
    add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
    add_kv(LLM_KV_USE_PARALLEL_RESIDUAL,             hparams.use_par_res);
    // add_kv(LLM_KV_TENSOR_DATA_LAYOUT,                ???);
    add_kv(LLM_KV_EXPERT_COUNT,                      hparams.n_expert);
    add_kv(LLM_KV_EXPERT_USED_COUNT,                 hparams.n_expert_used);
    add_kv(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared);
    add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale);
    add_kv(LLM_KV_POOLING_TYPE,                      uint32_t(hparams.pooling_type));
    add_kv(LLM_KV_LOGIT_SCALE,                       hparams.f_logit_scale);
    add_kv(LLM_KV_DECODER_START_TOKEN_ID,            hparams.dec_start_token_id);
    add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING,            hparams.f_attn_logit_softcapping);
    add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING,           hparams.f_final_logit_softcapping);
    add_kv(LLM_KV_SWIN_NORM,                         hparams.swin_norm);
    add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS,            hparams.rescale_every_n_layers);
    add_kv(LLM_KV_TIME_MIX_EXTRA_DIM,                hparams.time_mix_extra_dim);
    add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM,              hparams.time_decay_extra_dim);
    add_kv(LLM_KV_RESIDUAL_SCALE,                    hparams.f_residual_scale);
    add_kv(LLM_KV_EMBEDDING_SCALE,                   hparams.f_embedding_scale);

    add_kv(LLM_KV_ATTENTION_HEAD_COUNT,              hparams.n_head_arr, true);
    add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV,           hparams.n_head_kv_arr, true);
    add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS,          hparams.f_max_alibi_bias);
    add_kv(LLM_KV_ATTENTION_CLAMP_KQV,               hparams.f_clamp_kqv);
    add_kv(LLM_KV_ATTENTION_KEY_LENGTH,              hparams.n_embd_head_k);
    add_kv(LLM_KV_ATTENTION_VALUE_LENGTH,            hparams.n_embd_head_v);
    add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS,           hparams.f_norm_eps);
    add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
    add_kv(LLM_KV_ATTENTION_CAUSAL,                  hparams.causal_attn);
    add_kv(LLM_KV_ATTENTION_Q_LORA_RANK,             hparams.n_lora_q);
    add_kv(LLM_KV_ATTENTION_KV_LORA_RANK,            hparams.n_lora_kv);
    add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,  hparams.n_rel_attn_bkts);
    add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW,          hparams.n_swa);
    add_kv(LLM_KV_ATTENTION_SCALE,                   hparams.f_attention_scale);

    const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;

    add_kv(LLM_KV_ROPE_DIMENSION_COUNT,              hparams.n_rot);
    add_kv(LLM_KV_ROPE_FREQ_BASE,                    hparams.rope_freq_base_train);
    // add_kv(LLM_KV_ROPE_SCALE_LINEAR,                 rope_scaling_factor); // old name
    add_kv(LLM_KV_ROPE_SCALING_TYPE,                 llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
    add_kv(LLM_KV_ROPE_SCALING_FACTOR,               rope_scaling_factor);
    add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR,          hparams.rope_attn_factor);
    add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,         hparams.n_ctx_orig_yarn);
    add_kv(LLM_KV_ROPE_SCALING_FINETUNED,            hparams.rope_finetuned);
    add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL,         hparams.rope_yarn_log_mul);

    // TODO: implement split file support
    // add_kv(LLM_KV_SPLIT_NO,                          ???);
    // add_kv(LLM_KV_SPLIT_COUNT,                       ???);
    // add_kv(LLM_KV_SPLIT_TENSORS_COUNT,               ???);

    add_kv(LLM_KV_SSM_INNER_SIZE,                    hparams.ssm_d_inner);
    add_kv(LLM_KV_SSM_CONV_KERNEL,                   hparams.ssm_d_conv);
    add_kv(LLM_KV_SSM_STATE_SIZE,                    hparams.ssm_d_state);
    add_kv(LLM_KV_SSM_TIME_STEP_RANK,                hparams.ssm_dt_rank);
    add_kv(LLM_KV_SSM_DT_B_C_RMS,                    hparams.ssm_dt_b_c_rms);

    add_kv(LLM_KV_WKV_HEAD_SIZE,                     hparams.wkv_head_size);

    add_kv(LLM_KV_TOKENIZER_MODEL,                   vocab.get_tokenizer_model());
    add_kv(LLM_KV_TOKENIZER_PRE,                     vocab.get_tokenizer_pre());
    add_kv(LLM_KV_TOKENIZER_LIST,                    tokens);
    add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE,              token_types);
    add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,        vocab.n_token_types());
    add_kv(LLM_KV_TOKENIZER_SCORES,                  scores);
    add_kv(LLM_KV_TOKENIZER_MERGES,                  vocab.get_bpe_merges());
    // FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
    add_kv(LLM_KV_TOKENIZER_BOS_ID,                  uint32_t(vocab.token_bos()));
    add_kv(LLM_KV_TOKENIZER_EOS_ID,                  uint32_t(vocab.token_eos()));
    add_kv(LLM_KV_TOKENIZER_EOT_ID,                  uint32_t(vocab.token_eot()));
    add_kv(LLM_KV_TOKENIZER_EOM_ID,                  uint32_t(vocab.token_eom()));
    add_kv(LLM_KV_TOKENIZER_UNK_ID,                  uint32_t(vocab.token_unk()));
    add_kv(LLM_KV_TOKENIZER_SEP_ID,                  uint32_t(vocab.token_sep()));
    add_kv(LLM_KV_TOKENIZER_PAD_ID,                  uint32_t(vocab.token_pad()));
    // add_kv(LLM_KV_TOKENIZER_CLS_ID,                  uint32_t(vocab.token_bos())); // deprecated
    // add_kv(LLM_KV_TOKENIZER_MASK_ID,                 ???);
    add_kv(LLM_KV_TOKENIZER_ADD_BOS,                 vocab.get_add_bos());
    add_kv(LLM_KV_TOKENIZER_ADD_EOS,                 vocab.get_add_eos());
    add_kv(LLM_KV_TOKENIZER_ADD_SEP,                 vocab.get_add_sep());
    add_kv(LLM_KV_TOKENIZER_ADD_PREFIX,              vocab.get_add_space_prefix());
    add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,         vocab.get_remove_extra_whitespaces());
    add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,    vocab.get_precompiled_charsmap());
    // add_kv(LLM_KV_TOKENIZER_HF_JSON,                 ???);
    // add_kv(LLM_KV_TOKENIZER_RWKV,                    ???);
    add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID,              uint32_t(vocab.token_fim_pre()));
    add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID,              uint32_t(vocab.token_fim_suf()));
    add_kv(LLM_KV_TOKENIZER_FIM_MID_ID,              uint32_t(vocab.token_fim_mid()));
    add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID,              uint32_t(vocab.token_fim_pad()));
    add_kv(LLM_KV_TOKENIZER_FIM_REP_ID,              uint32_t(vocab.token_fim_rep()));
    add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID,              uint32_t(vocab.token_fim_sep()));

    // TODO: implement LoRA support
    // add_kv(LLM_KV_ADAPTER_TYPE,                      ???);
    // add_kv(LLM_KV_ADAPTER_LORA_ALPHA,                ???);

    // deprecated
    // add_kv(LLM_KV_TOKENIZER_PREFIX_ID,               ???);
    // add_kv(LLM_KV_TOKENIZER_SUFFIX_ID,               ???);
    // add_kv(LLM_KV_TOKENIZER_MIDDLE_ID,               ???);
}

void llama_model_saver::add_tensors_from_model() {
    if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
        add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
    }
    add_tensor(model.type_embd);
    add_tensor(model.pos_embd);
    add_tensor(model.tok_norm);
    add_tensor(model.tok_norm_b);
    add_tensor(model.output_norm);
    add_tensor(model.output_norm_b);
    add_tensor(model.output);
    add_tensor(model.output_b);
    add_tensor(model.output_norm_enc);
    add_tensor(model.cls);
    add_tensor(model.cls_b);
    add_tensor(model.cls_out);
    add_tensor(model.cls_out_b);

    for (const struct llama_layer & layer : model.layers) {
        for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
            add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
        }
    }
}

void llama_model_saver::save(const std::string & path_model) {
    gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
}