Spaces:
Running
Running
File size: 42,047 Bytes
dd33ace 6ba2c8f dd33ace a916e92 dd33ace a916e92 dd33ace 8d3b3c1 dd33ace a916e92 dd33ace a916e92 dd33ace a916e92 8d3b3c1 dd33ace a916e92 dd33ace f585fe7 dd33ace a916e92 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace f585fe7 dd33ace f585fe7 8d3b3c1 dd33ace a916e92 dd33ace 8d3b3c1 dd33ace f585fe7 dd33ace a916e92 dd33ace a916e92 dd33ace a916e92 dd33ace a916e92 dd33ace a916e92 dd33ace a916e92 dd33ace 8d3b3c1 dd33ace f585fe7 8d3b3c1 dd33ace f585fe7 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 f585fe7 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 f585fe7 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace f585fe7 8d3b3c1 dd33ace 8d3b3c1 f585fe7 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 f585fe7 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 341f451 dd33ace 8d3b3c1 f585fe7 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 341f451 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace 8d3b3c1 dd33ace f585fe7 dd33ace 8d3b3c1 dd33ace f585fe7 dd33ace f585fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
#include "ggml-opt.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cinttypes>
#include <map>
#include <random>
#include <vector>
struct ggml_opt_dataset {
struct ggml_context * ctx = nullptr;
ggml_backend_buffer_t buf = nullptr;
struct ggml_tensor * data = nullptr;
struct ggml_tensor * labels = nullptr;
int64_t ndata = -1;
int64_t ndata_shard = -1;
size_t nbs_data = -1;
size_t nbs_labels = -1;
std::vector<int64_t> permutation;
};
struct ggml_opt_context {
ggml_backend_sched_t backend_sched = nullptr;
ggml_cgraph * allocated_graph = nullptr;
ggml_cgraph * allocated_graph_copy = nullptr;
struct ggml_context * ctx_static = nullptr;
struct ggml_context * ctx_cpu = nullptr;
struct ggml_context * ctx_compute = nullptr;
struct ggml_context * ctx_copy = nullptr;
ggml_backend_buffer_t buf_static = nullptr;
ggml_backend_buffer_t buf_cpu = nullptr;
std::mt19937 rng;
enum ggml_opt_loss_type loss_type;
enum ggml_opt_build_type build_type;
enum ggml_opt_build_type build_type_alloc;
struct ggml_tensor * inputs = nullptr;
struct ggml_tensor * outputs = nullptr;
struct ggml_tensor * labels = nullptr;
struct ggml_tensor * loss = nullptr;
struct ggml_tensor * pred = nullptr;
struct ggml_tensor * ncorrect = nullptr;
struct ggml_cgraph * gf = nullptr;
struct ggml_cgraph * gb_grad = nullptr;
struct ggml_cgraph * gb_opt = nullptr;
bool static_graphs = false;
bool eval_ready = false;
std::vector<struct ggml_tensor *> grad_accs;
std::vector<struct ggml_tensor *> grad_m;
std::vector<struct ggml_tensor *> grad_v;
int64_t iter = 1;
int32_t opt_period = 1;
int32_t opt_i = 0;
bool loss_per_datapoint = false;
ggml_opt_get_optimizer_params get_opt_pars = nullptr;
void * get_opt_pars_ud = nullptr;
struct ggml_tensor * opt_step_params = nullptr; // Stores output of get_opt_pars.
enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
};
struct ggml_opt_result {
int64_t ndata = 0;
std::vector<float> loss;
std::vector<int32_t> pred;
int64_t ncorrect = 0;
int64_t opt_period = -1;
bool loss_per_datapoint = false;
};
// ====== Dataset ======
ggml_opt_dataset_t ggml_opt_dataset_init(
enum ggml_type type_data,
enum ggml_type type_label,
int64_t ne_datapoint,
int64_t ne_label,
int64_t ndata,
int64_t ndata_shard) {
GGML_ASSERT(ne_datapoint > 0);
GGML_ASSERT(ne_label >= 0);
GGML_ASSERT(ndata > 0);
GGML_ASSERT(ndata_shard > 0);
ggml_opt_dataset_t result = new ggml_opt_dataset;
result->ndata = ndata;
result->ndata_shard = ndata_shard;
{
struct ggml_init_params params = {
/*.mem_size =*/ 2*ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
result->ctx = ggml_init(params);
}
result->data = ggml_new_tensor_2d(result->ctx, type_data, ne_datapoint, ndata);
result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata;
if (ne_label > 0) {
result->labels = ggml_new_tensor_2d(result->ctx, type_label, ne_label, ndata);
result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata;
} else {
result->labels = nullptr;
result->nbs_labels = 0;
}
result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type());
const int64_t nshards = ndata/ndata_shard;
result->permutation.resize(nshards);
for (int64_t i = 0; i < nshards; ++i) {
result->permutation[i] = i;
}
return result;
}
void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) {
ggml_backend_buffer_free(dataset->buf);
ggml_free(dataset->ctx);
delete dataset;
}
int64_t ggml_opt_dataset_ndata(ggml_opt_dataset_t dataset) {
return dataset->ndata;
}
struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) {
return dataset->data;
}
struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) {
return dataset->labels;
}
void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) {
GGML_ASSERT(idata <= dataset->ndata);
if (idata < 0) {
std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng);
return;
}
GGML_ASSERT(idata % dataset->ndata_shard == 0);
const int64_t ishard_max = idata / dataset->ndata_shard;
std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng);
}
void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) {
GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch));
GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch));
GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
GGML_ASSERT( data_batch->type == dataset->data->type);
GGML_ASSERT(!labels_batch || labels_batch->type == dataset->labels->type);
const size_t nb_data_batch = ggml_nbytes(data_batch);
GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
if (labels_batch) {
const size_t nb_labels_batch = ggml_nbytes(labels_batch);
GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels);
}
GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data;
ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data);
if (!labels_batch) {
continue;
}
const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels;
ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels);
}
}
void ggml_opt_dataset_get_batch_host(ggml_opt_dataset_t dataset, void * data_batch, size_t nb_data_batch, void * labels_batch, int64_t ibatch) {
GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
const char * ptr_data = (const char *) dataset->data->data + ishard *dataset->nbs_data;
char * ptr_data_batch = (char *) data_batch + ishard_batch*dataset->nbs_data;
memcpy(ptr_data_batch, ptr_data, dataset->nbs_data);
if (!labels_batch) {
continue;
}
const char * ptr_labels = (const char *) dataset->labels->data + ishard *dataset->nbs_labels;
char * ptr_labels_batch = (char *) labels_batch + ishard_batch*dataset->nbs_labels;
memcpy(ptr_labels_batch, ptr_labels, dataset->nbs_labels);
}
}
// ====== Model / Context ======
struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) {
GGML_UNUSED(userdata);
ggml_opt_optimizer_params result;
result.adamw.alpha = 0.001f;
result.adamw.beta1 = 0.9f;
result.adamw.beta2 = 0.999f;
result.adamw.eps = 1e-8f;
result.adamw.wd = 0.0f;
result.sgd.alpha = 1e-3f;
result.sgd.wd = 0.0f;
return result;
}
struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata) {
return *((struct ggml_opt_optimizer_params *) userdata);
}
struct ggml_opt_params ggml_opt_default_params(
ggml_backend_sched_t backend_sched,
enum ggml_opt_loss_type loss_type) {
return {
/*backend_sched =*/ backend_sched,
/*ctx_compute =*/ nullptr,
/*inputs =*/ nullptr,
/*logits =*/ nullptr,
/*loss_type =*/ loss_type,
/*build_type =*/ GGML_OPT_BUILD_TYPE_OPT,
/*opt_period =*/ 1,
/*get_opt_pars =*/ ggml_opt_get_default_optimizer_params,
/*get_opt_pars_ud =*/ nullptr,
/*optimizer =*/ GGML_OPT_OPTIMIZER_TYPE_ADAMW,
};
}
static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_map, ggml_context * ctx, ggml_tensor * tensor) {
if (!tensor) {
return nullptr;
}
if (tensor_map.find(tensor) != tensor_map.end()) {
return tensor_map[tensor];
}
ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor);
tensor_map[tensor] = new_tensor;
new_tensor->op = tensor->op;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
new_tensor->nb[i] = tensor->nb[i];
}
new_tensor->flags = tensor->flags;
memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params));
strcpy(new_tensor->name, tensor->name);
new_tensor->data = tensor->data;
new_tensor->buffer = tensor->buffer;
new_tensor->extra = tensor->extra;
new_tensor->view_offs = tensor->view_offs;
new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src);
for (int i = 0; i < GGML_MAX_SRC; i++) {
new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]);
}
return new_tensor;
}
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) {
std::map<ggml_tensor *, ggml_tensor *> tensor_map;
ggml_cgraph * dst = ggml_new_graph_custom(ctx, src->size, /*grads =*/ true);
for (int i = 0; i < src->n_leafs; i++) {
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->leafs[i]));
}
GGML_ASSERT(dst->n_leafs == src->n_leafs);
for (int i = 0; i < src->n_nodes; i++) {
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->nodes[i]));
}
GGML_ASSERT(dst->n_nodes == src->n_nodes);
for (int i = 0; i < src->n_nodes; ++i) {
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
dst->grads[igrad_dst] = src->grads[igrad_src];
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
}
return dst;
}
static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
GGML_ASSERT(opt_ctx->ctx_compute && "no compute context set, either use static graphs or set one with ggml_opt_prepare_alloc");
GGML_ASSERT((!opt_ctx->static_graphs || opt_ctx->inputs->data) && "when using static graphs the inputs must be allocated statically");
const enum ggml_opt_optimizer_type optimizer = opt_ctx->optimizer;
const bool accumulate = opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD &&
!(opt_ctx->static_graphs && opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period == 1);
const bool need_momenta = opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT &&
opt_ctx->optimizer == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
ggml_set_input(opt_ctx->inputs);
ggml_set_output(opt_ctx->outputs);
int n_param = 0;
for (int i = 0; i < opt_ctx->gf->n_nodes; ++i) {
const struct ggml_tensor * node = opt_ctx->gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
n_param++;
}
GGML_ASSERT(!(node->flags & GGML_TENSOR_FLAG_LOSS) && "support for extra loss terms not implemented");
}
if (!opt_ctx->ctx_static) {
// The static context is used for:
// - gradients (1 per loss, 1 tensor per param if using gradient accumulation)
// - optimizer momenta (2 tensors per param)
// - labels (if using static graphs)
// - loss (if using static graphs, up to 5 tensors)
// - pred (if using static graphs)
// - ncorrect (if using static graphs, 2 tensors).
constexpr size_t n_loss = 1;
const size_t tensors_per_param = (accumulate ? 1 : 0) + (need_momenta ? 2 : 0);
const size_t tensors_const = opt_ctx->static_graphs ? 9 : 0;
const size_t size_meta = (n_loss + tensors_per_param*n_param + tensors_const) * ggml_tensor_overhead();
struct ggml_init_params params = {
/*.mem_size =*/ size_meta,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
opt_ctx->ctx_static = ggml_init(params);
}
GGML_ASSERT(opt_ctx->build_type <= opt_ctx->build_type_alloc);
{
// The cpu context is allocated statically if using static graphs, dynamically otherwise.
// It is used for:
// - optimizer parameters (1 shared for all optimizer invocations)
const size_t size_meta = 1 * ggml_tensor_overhead();
struct ggml_init_params params = {
/*.mem_size =*/ size_meta,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ggml_free(opt_ctx->ctx_cpu);
opt_ctx->ctx_cpu = ggml_init(params);
ggml_backend_buffer_free(opt_ctx->buf_cpu);
opt_ctx->buf_cpu = nullptr;
}
struct ggml_context * ctx_results = opt_ctx->static_graphs ? opt_ctx->ctx_static : opt_ctx->ctx_compute;
switch (opt_ctx->loss_type) {
case GGML_OPT_LOSS_TYPE_MEAN: {
opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs);
ggml_set_name(opt_ctx->loss, "loss_sum");
const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs));
opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale);
ggml_set_name(opt_ctx->loss, "loss_mean");
opt_ctx->loss_per_datapoint = true;
break;
}
case GGML_OPT_LOSS_TYPE_SUM: {
opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs);
ggml_set_name(opt_ctx->loss, "loss_sum");
opt_ctx->loss_per_datapoint = false;
break;
}
case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: {
opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs);
ggml_set_input(opt_ctx->labels);
ggml_set_name(opt_ctx->labels, "labels");
opt_ctx->loss = ggml_cross_entropy_loss(ctx_results, opt_ctx->outputs, opt_ctx->labels);
ggml_set_name(opt_ctx->loss, "loss_cross_entropy");
if (opt_ctx->opt_period > 1) {
opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, 1.0f / opt_ctx->opt_period);
ggml_set_name(opt_ctx->loss, "loss_cross_entropy_scaled");
}
opt_ctx->loss_per_datapoint = true;
break;
}
case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: {
opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs);
ggml_set_input(opt_ctx->labels);
ggml_set_name(opt_ctx->labels, "labels");
opt_ctx->loss = ggml_sub(ctx_results, opt_ctx->outputs, opt_ctx->labels);
ggml_set_name(opt_ctx->loss, "loss_error");
opt_ctx->loss = ggml_sqr(ctx_results, opt_ctx->loss);
ggml_set_name(opt_ctx->loss, "loss_squared_error");
opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->loss);
ggml_set_name(opt_ctx->loss, "loss_sum_squared_error");
const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs));
opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale);
ggml_set_name(opt_ctx->loss, "loss_mean_squared_error");
opt_ctx->loss_per_datapoint = true;
break;
}
}
ggml_set_output(opt_ctx->loss);
ggml_set_loss(opt_ctx->loss);
ggml_build_forward_expand(opt_ctx->gf, opt_ctx->loss);
if (opt_ctx->loss_type == GGML_OPT_LOSS_TYPE_CROSS_ENTROPY) {
opt_ctx->pred = ggml_argmax(ctx_results, opt_ctx->outputs);
ggml_set_name(opt_ctx->pred, "pred");
ggml_set_output(opt_ctx->pred);
ggml_build_forward_expand(opt_ctx->gf, opt_ctx->pred);
opt_ctx->ncorrect = ggml_count_equal(ctx_results, opt_ctx->pred, ggml_argmax(ctx_results, opt_ctx->labels));
ggml_set_name(opt_ctx->ncorrect, "ncorrect");
ggml_set_output(opt_ctx->ncorrect);
ggml_build_forward_expand(opt_ctx->gf, opt_ctx->ncorrect);
}
if (opt_ctx->buf_static) {
if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
return;
}
} else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_FORWARD) {
opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(
opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
return;
}
if (opt_ctx->grad_accs.empty()) {
GGML_ASSERT(opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD);
const int n_nodes = opt_ctx->gf->n_nodes;
opt_ctx->grad_accs.resize(n_nodes);
for (int i = 0; i < n_nodes; ++i) {
ggml_tensor * node = opt_ctx->gf->nodes[i];
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
opt_ctx->grad_accs[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
} else {
opt_ctx->grad_accs[i] = nullptr;
}
}
if (need_momenta && opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_OPT) {
opt_ctx->grad_m.resize(n_nodes);
opt_ctx->grad_v.resize(n_nodes);
for (int i = 0; i < n_nodes; ++i) {
ggml_tensor * node = opt_ctx->gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
opt_ctx->grad_m[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
opt_ctx->grad_v[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
} else {
opt_ctx->grad_m[i] = nullptr;
opt_ctx->grad_v[i] = nullptr;
}
}
}
}
// gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients.
opt_ctx->gb_grad = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gf, /*force_grads =*/ true);
ggml_build_backward_expand(opt_ctx->ctx_compute, opt_ctx->gb_grad, opt_ctx->grad_accs.data());
if (opt_ctx->buf_static) {
if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_GRAD) {
return;
}
} else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_GRAD) {
opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
ggml_graph_reset(opt_ctx->gb_grad);
}
GGML_ASSERT(opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT);
// gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
opt_ctx->gb_opt = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gb_grad, /*force_grads =*/ true);
opt_ctx->opt_step_params = ggml_new_tensor_1d(opt_ctx->ctx_cpu, GGML_TYPE_F32, need_momenta ? 7 : 2);
ggml_tensor * adamw_params = opt_ctx->opt_step_params;
ggml_set_input(adamw_params);
const char * optimizer_name = ggml_opt_optimizer_name(opt_ctx->optimizer);
ggml_format_name(adamw_params, "%s_params", optimizer_name);
for (int i = opt_ctx->gf->n_nodes-1; i >= 0; --i) {
struct ggml_tensor * node = opt_ctx->gb_opt->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(opt_ctx->gb_opt, node);
if (grad && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
struct ggml_tensor * m = nullptr;
struct ggml_tensor * v = nullptr;
if (need_momenta) {
m = opt_ctx->grad_m[i];
v = opt_ctx->grad_v[i];
ggml_format_name(m, "AdamW m for %s", node->name);
ggml_format_name(v, "AdamW v for %s", node->name);
}
struct ggml_tensor * opt_step;
switch (optimizer) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW:
opt_step = ggml_opt_step_adamw(opt_ctx->ctx_compute, node, grad, m, v, adamw_params);
break;
case GGML_OPT_OPTIMIZER_TYPE_SGD:
opt_step = ggml_opt_step_sgd(opt_ctx->ctx_compute, node, grad, adamw_params);
break;
default:
GGML_ABORT("fatal error");
}
ggml_format_name(opt_step, "%s step for %s", optimizer_name, node->name);
ggml_build_forward_expand(opt_ctx->gb_opt, opt_step);
}
}
if (!opt_ctx->buf_static) {
opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(
opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
ggml_graph_reset(opt_ctx->gb_opt);
}
opt_ctx->buf_cpu = ggml_backend_alloc_ctx_tensors_from_buft(opt_ctx->ctx_cpu, ggml_backend_cpu_buffer_type());
}
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
ggml_opt_context_t result = new struct ggml_opt_context;
result->backend_sched = params.backend_sched;
result->ctx_compute = params.ctx_compute;
result->loss_type = params.loss_type;
result->build_type = params.build_type;
result->build_type_alloc = params.build_type;
result->inputs = params.inputs;
result->outputs = params.outputs;
result->opt_period = params.opt_period;
result->get_opt_pars = params.get_opt_pars;
result->get_opt_pars_ud = params.get_opt_pars_ud;
result->optimizer = params.optimizer;
GGML_ASSERT(result->opt_period >= 1);
result->static_graphs = result->ctx_compute;
if (!result->static_graphs) {
GGML_ASSERT(!result->inputs);
GGML_ASSERT(!result->outputs);
return result;
}
GGML_ASSERT(result->inputs);
GGML_ASSERT(result->outputs);
result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
ggml_build_forward_expand(result->gf, result->outputs);
ggml_opt_build(result);
return result;
}
void ggml_opt_free(ggml_opt_context_t opt_ctx) {
if (opt_ctx == nullptr) {
return;
}
ggml_backend_buffer_free(opt_ctx->buf_static);
ggml_backend_buffer_free(opt_ctx->buf_cpu);
ggml_free(opt_ctx->ctx_static);
ggml_free(opt_ctx->ctx_cpu);
delete opt_ctx;
}
void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) {
if (optimizer) {
ggml_graph_reset(opt_ctx->gb_opt);
opt_ctx->iter = 1;
} else {
ggml_graph_reset(opt_ctx->gb_grad);
}
}
bool ggml_opt_static_graphs(ggml_opt_context_t opt_ctx) {
return opt_ctx->static_graphs;
}
struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) {
return opt_ctx->inputs;
}
struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) {
return opt_ctx->outputs;
}
struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) {
return opt_ctx->labels;
}
struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) {
return opt_ctx->loss;
}
struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) {
return opt_ctx->pred;
}
struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) {
return opt_ctx->ncorrect;
}
struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) {
return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node);
}
// ====== Optimization Result ======
ggml_opt_result_t ggml_opt_result_init() {
return new ggml_opt_result;
}
void ggml_opt_result_free(ggml_opt_result_t result) {
delete result;
}
void ggml_opt_result_reset(ggml_opt_result_t result) {
result->ndata = 0;
result->loss.clear();
result->pred.clear();
result->ncorrect = 0;
}
void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) {
*ndata = result->ndata;
}
void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) {
const int64_t nbatches = result->loss.size(); // Number of physical batches.
if (nbatches == 0) {
*loss = 0.0;
*unc = NAN;
return;
}
double sum = 0.0;
double sum_squared = 0.0;
for (const float & loss : result->loss) {
// If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch.
const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss;
sum += loss_scaled;
sum_squared += loss_scaled*loss_scaled;
}
const double mean = sum/nbatches;
*loss = result->loss_per_datapoint ? mean : sum;
if (!unc) {
return;
}
if (nbatches < 2) {
*unc = NAN;
return;
}
const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1)
*unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1));
}
void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) {
for (size_t i = 0; i < result->pred.size(); ++i) {
pred[i] = result->pred[i];
}
}
void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) {
*accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN;
if (!unc) {
return;
}
*unc = result->ncorrect >= 0 && result->ndata >= 2 ?
sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN;
}
// ====== Computation ======
void ggml_opt_prepare_alloc(
ggml_opt_context_t opt_ctx,
struct ggml_context * ctx_compute,
struct ggml_cgraph * gf,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs) {
GGML_ASSERT(!opt_ctx->static_graphs);
opt_ctx->ctx_compute = ctx_compute;
opt_ctx->gf = gf;
opt_ctx->inputs = inputs;
opt_ctx->outputs = outputs;
}
void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward) {
GGML_ASSERT(!opt_ctx->eval_ready);
if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period > 1 && opt_ctx->opt_i == 0) {
ggml_graph_reset(opt_ctx->gb_grad);
}
if (backward) {
const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
opt_ctx->build_type = opt_i_next == 0 ? GGML_OPT_BUILD_TYPE_OPT : GGML_OPT_BUILD_TYPE_GRAD;
} else {
opt_ctx->build_type = GGML_OPT_BUILD_TYPE_FORWARD;
}
if (!opt_ctx->static_graphs) {
ggml_opt_build(opt_ctx);
}
struct ggml_cgraph * graph = nullptr;
switch (opt_ctx->build_type) {
case GGML_OPT_BUILD_TYPE_FORWARD: {
graph = opt_ctx->gf;
} break;
case GGML_OPT_BUILD_TYPE_GRAD: {
graph = opt_ctx->gb_grad;
} break;
case GGML_OPT_BUILD_TYPE_OPT: {
graph = opt_ctx->gb_opt;
} break;
}
GGML_ASSERT(graph);
if (opt_ctx->allocated_graph == graph) {
opt_ctx->eval_ready = true;
return;
}
ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph
if (opt_ctx->static_graphs) {
ggml_init_params params = {
/*.mem_size =*/ graph->size*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph->size, graph->grads),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ggml_free(opt_ctx->ctx_copy);
opt_ctx->ctx_copy = ggml_init(params);
opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);
} else {
opt_ctx->allocated_graph_copy = graph;
}
ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
opt_ctx->allocated_graph = graph;
opt_ctx->eval_ready = true;
}
void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result) {
GGML_ASSERT(opt_ctx->eval_ready);
if (opt_ctx->allocated_graph == opt_ctx->gb_opt) {
const ggml_opt_optimizer_params & opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
switch (opt_ctx->optimizer) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW: {
GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
GGML_ASSERT(opt_pars.adamw.eps >= 0.0f);
GGML_ASSERT(opt_pars.adamw.wd >= 0.0f);
GGML_ASSERT(opt_pars.adamw.wd <= 1.0f);
// beta1, beta2 after applying warmup
const float beta1h = 1.0f / (1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
const float beta2h = 1.0f / (1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));
float * adamw_par_data = ggml_get_data_f32(opt_ctx->opt_step_params);
adamw_par_data[0] = opt_pars.adamw.alpha;
adamw_par_data[1] = opt_pars.adamw.beta1;
adamw_par_data[2] = opt_pars.adamw.beta2;
adamw_par_data[3] = opt_pars.adamw.eps;
adamw_par_data[4] = opt_pars.adamw.wd;
adamw_par_data[5] = beta1h;
adamw_par_data[6] = beta2h;
} break;
case GGML_OPT_OPTIMIZER_TYPE_SGD: {
GGML_ASSERT(opt_pars.sgd.alpha > 0.0f);
GGML_ASSERT(opt_pars.sgd.wd >= 0.0f);
GGML_ASSERT(opt_pars.sgd.wd <= 1.0f);
float * sgd = ggml_get_data_f32(opt_ctx->opt_step_params);
sgd[0] = opt_pars.sgd.alpha;
sgd[1] = opt_pars.sgd.wd;
} break;
default:
GGML_ABORT("fatal error");
}
}
ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt;
opt_ctx->opt_i = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
if (!opt_ctx->static_graphs) {
opt_ctx->gf = nullptr;
opt_ctx->gb_grad = nullptr;
opt_ctx->gb_opt = nullptr;
opt_ctx->allocated_graph = nullptr;
opt_ctx->allocated_graph_copy = nullptr;
}
opt_ctx->eval_ready = false;
if (!result) {
return;
}
if (result->ndata == 0) {
result->loss_per_datapoint = opt_ctx->loss_per_datapoint;
result->opt_period = opt_ctx->opt_period;
} else {
GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint);
GGML_ASSERT(result->opt_period == opt_ctx->opt_period);
}
const int64_t ndata = opt_ctx->outputs->ne[1];
GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported");
result->ndata += ndata;
GGML_ASSERT(ggml_is_scalar(opt_ctx->loss));
GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32);
float loss;
ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss));
result->loss.push_back(loss);
if (opt_ctx->pred) {
GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32);
std::vector<int32_t> pred(ndata);
ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred));
result->pred.insert(result->pred.end(), pred.begin(), pred.end());
}
if (!opt_ctx->ncorrect || result->ncorrect < 0) {
result->ncorrect = -1;
return;
}
GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect));
GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64);
int64_t ncorrect;
ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect));
result->ncorrect += ncorrect;
}
// ====== High-Level Functions ======
void ggml_opt_epoch(
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval) {
GGML_ASSERT(ggml_opt_static_graphs(opt_ctx) && "ggml_opt_epoch requires static graphs");
struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx);
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
struct ggml_tensor * data = ggml_opt_dataset_data(dataset);
GGML_ASSERT(data->ne[0] == inputs->ne[0]);
const int64_t ndata = data->ne[1];
const int64_t ndata_batch = inputs->ne[1];
GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0);
const int64_t nbatches = ndata/ndata_batch;
idata_split = idata_split < 0 ? ndata : idata_split;
GGML_ASSERT(idata_split % ndata_batch == 0);
const int64_t ibatch_split = idata_split / ndata_batch;
int64_t ibatch = 0;
int64_t t_loop_start = ggml_time_us();
for (; ibatch < ibatch_split; ++ibatch) {
ggml_opt_alloc(opt_ctx, /*backward =*/ true);
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
ggml_opt_eval(opt_ctx, result_train);
if (callback_train) {
callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start);
}
}
t_loop_start = ggml_time_us();
for (; ibatch < nbatches; ++ibatch) {
ggml_opt_alloc(opt_ctx, /*backward =*/ false);
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
ggml_opt_eval(opt_ctx, result_eval);
if (callback_eval) {
callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start);
}
}
}
void ggml_opt_epoch_callback_progress_bar(
bool train,
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
int64_t ibatch,
int64_t ibatch_max,
int64_t t_start_us) {
fprintf(stderr, "%s[", train ? "train: " : "val: ");
// The progress bar consists of partially filled blocks, unicode has 8 separate fill levels.
constexpr int64_t bar_length = 8;
const int64_t ibatch8 = 8 * ibatch;
for (int64_t j = 0; j < bar_length; ++j) {
if (ibatch_max * (8*j + 8) / bar_length < ibatch8) {
fprintf(stderr, "\u2588"); // full block
} else if (ibatch_max * (8*j + 7) / bar_length < ibatch8) {
fprintf(stderr, "\u2589"); // 7/8 filled
} else if (ibatch_max * (8*j + 6) / bar_length < ibatch8) {
fprintf(stderr, "\u258A"); // 6/8 filled
} else if (ibatch_max * (8*j + 5) / bar_length < ibatch8) {
fprintf(stderr, "\u258B"); // 5/8 filled
} else if (ibatch_max * (8*j + 4) / bar_length < ibatch8) {
fprintf(stderr, "\u258C"); // 4/8 filled
} else if (ibatch_max * (8*j + 3) / bar_length < ibatch8) {
fprintf(stderr, "\u258D"); // 3/8 filled
} else if (ibatch_max * (8*j + 2) / bar_length < ibatch8) {
fprintf(stderr, "\u258E"); // 2/8 filled
} else if (ibatch_max * (8*j + 1) / bar_length < ibatch8) {
fprintf(stderr, "\u258F"); // 1/8 filled
} else {
fprintf(stderr, " ");
}
}
const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1];
const int64_t idata = ibatch*batch_size;
const int64_t idata_max = ibatch_max*batch_size;
double loss;
double loss_unc;
ggml_opt_result_loss(result, &loss, &loss_unc);
double accuracy;
double accuracy_unc;
ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc);
const int64_t t_ibatch_us = ggml_time_us() - t_start_us;
int64_t t_ibatch_s = t_ibatch_us / 1000000;
const int64_t t_ibatch_h = t_ibatch_s / 3600;
t_ibatch_s -= t_ibatch_h * 3600;
const int64_t t_ibatch_m = t_ibatch_s / 60;
t_ibatch_s -= t_ibatch_m * 60;
const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch;
int64_t t_eta_s = t_eta_us / 1000000;
const int64_t t_eta_h = t_eta_s / 3600;
t_eta_s -= t_eta_h * 3600;
const int64_t t_eta_m = t_eta_s / 60;
t_eta_s -= t_eta_m * 60;
fprintf(stderr, "] data=%07" PRId64 "/%07" PRId64 " loss=%.5lf±%.5lf acc=%.2lf±%.2lf%% "
"t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " \r",
idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc,
t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s);
if (ibatch == ibatch_max) {
fprintf(stderr, "\n");
}
fflush(stderr);
GGML_UNUSED(dataset);
}
void ggml_opt_fit(
ggml_backend_sched_t backend_sched,
ggml_context * ctx_compute,
ggml_tensor * inputs,
ggml_tensor * outputs,
ggml_opt_dataset_t dataset,
enum ggml_opt_loss_type loss_type,
enum ggml_opt_optimizer_type optimizer,
ggml_opt_get_optimizer_params get_opt_pars,
int64_t nepoch,
int64_t nbatch_logical,
float val_split,
bool silent) {
ggml_time_init();
const int64_t t_start_us = ggml_time_us();
const int64_t ndata = ggml_opt_dataset_data(dataset)->ne[1];
const int64_t nbatch_physical = inputs->ne[1];
GGML_ASSERT(ndata % nbatch_logical == 0);
GGML_ASSERT(nbatch_logical % nbatch_physical == 0);
const int64_t opt_period = nbatch_logical / nbatch_physical;
const int64_t nbatches_logical = ndata / nbatch_logical;
GGML_ASSERT(val_split >= 0.0f);
GGML_ASSERT(val_split < 1.0f);
const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical)
const int64_t idata_split = ibatch_split * nbatch_physical;
int64_t epoch = 1;
ggml_opt_params params = ggml_opt_default_params(backend_sched, loss_type);
params.ctx_compute = ctx_compute;
params.inputs = inputs;
params.outputs = outputs;
params.opt_period = opt_period;
params.get_opt_pars = get_opt_pars;
params.get_opt_pars_ud = &epoch;
params.optimizer = optimizer;
ggml_opt_context_t opt_ctx = ggml_opt_init(params);
// Shuffling the data is generally useful but there is only a point if not all data is used in a single batch.
if (nbatch_logical < ndata) {
ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation).
}
ggml_opt_result_t result_train = ggml_opt_result_init();
ggml_opt_result_t result_val = ggml_opt_result_init();
ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar;
for (; epoch <= nepoch; ++epoch) {
if (nbatch_logical < idata_split) {
ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split);
}
ggml_opt_result_reset(result_train);
ggml_opt_result_reset(result_val);
if (!silent) {
fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch);
}
ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback);
if (!silent) {
fprintf(stderr, "\n");
}
}
if (!silent) {
int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000;
const int64_t t_total_h = t_total_s / 3600;
t_total_s -= t_total_h * 3600;
const int64_t t_total_m = t_total_s / 60;
t_total_s -= t_total_m * 60;
fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s);
}
ggml_opt_free(opt_ctx);
ggml_opt_result_free(result_train);
ggml_opt_result_free(result_val);
}
enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t c) {
return c->optimizer;
}
GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type o) {
switch (o) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW:
return "adamw";
case GGML_OPT_OPTIMIZER_TYPE_SGD:
return "sgd";
default:
return "undefined";
};
}
|