Spaces:
Sleeping
Sleeping
| #include "clamp.cuh" | |
| static __device__ __forceinline__ float op_clamp(float x, float min, float max) { | |
| return fminf(fmaxf(x, min), max); | |
| } | |
| template <class T> | |
| static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) { | |
| const int i = blockDim.x*blockIdx.x + threadIdx.x; | |
| if (i >= k) { | |
| return; | |
| } | |
| dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max); | |
| } | |
| template <class T> | |
| static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) { | |
| const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE; | |
| op_clamp_kernel<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k); | |
| } | |
| void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const void * src0_d = src0->data; | |
| void * dst_d = dst->data; | |
| cudaStream_t stream = ctx.stream(); | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); | |
| GGML_ASSERT(src0->type == dst->type); | |
| float min; | |
| float max; | |
| memcpy(&min, dst->op_params, sizeof(float)); | |
| memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); | |
| if (src0->type == GGML_TYPE_F16) { | |
| clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream); | |
| } else { | |
| clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream); | |
| } | |
| } | |