Spaces:
Sleeping
Sleeping
Commit
·
315df8c
1
Parent(s):
c1442f3
CUDA: quantized KV support for FA vec (llama/7527)
Browse files* CUDA: quantized KV support for FA vec
* try CI fix
* fix commented-out kernel variants
* add q8_0 q4_0 tests
* fix nwarps > batch size
* split fattn compile via extern templates
* fix flake8
* fix metal tests
* fix cmake
* make generate_cu_files.py executable
* add autogenerated .cu files
* fix AMD
* error if type_v != FP16 and not flash_attn
* remove obsolete code
This view is limited to 50 files because it contains too many changes.
See raw diff
- ggml-cuda.cu +6 -2
- ggml-cuda/fattn-common.cuh +537 -2
- ggml-cuda/fattn-tile-f16.cu +3 -0
- ggml-cuda/fattn-tile-f32.cu +3 -0
- ggml-cuda/fattn-vec-f16.cuh +392 -2
- ggml-cuda/fattn-vec-f32.cuh +374 -1
- ggml-cuda/fattn-wmma-f16.cuh +490 -0
- ggml-cuda/fattn.cu +232 -521
- ggml-cuda/mmq.cu +2 -2
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
ggml-cuda.cu
CHANGED
|
@@ -2905,10 +2905,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|
| 2905 |
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 2906 |
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
|
| 2907 |
#else
|
| 2908 |
-
if (op->src[0]->ne[0] ==
|
| 2909 |
return true;
|
| 2910 |
}
|
| 2911 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2912 |
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 2913 |
default:
|
| 2914 |
return false;
|
|
|
|
| 2905 |
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 2906 |
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
|
| 2907 |
#else
|
| 2908 |
+
if (op->src[0]->ne[0] == 128) {
|
| 2909 |
return true;
|
| 2910 |
}
|
| 2911 |
+
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
|
| 2912 |
+
return true;
|
| 2913 |
+
}
|
| 2914 |
+
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
|
| 2915 |
+
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
| 2916 |
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 2917 |
default:
|
| 2918 |
return false;
|
ggml-cuda/fattn-common.cuh
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
#include "common.cuh"
|
|
|
|
| 2 |
|
| 3 |
#include <cstdint>
|
| 4 |
|
|
@@ -34,11 +37,523 @@ typedef void (* fattn_kernel_t)(
|
|
| 34 |
const int nb11,
|
| 35 |
const int nb12,
|
| 36 |
const int nb13,
|
|
|
|
|
|
|
|
|
|
| 37 |
const int ne0,
|
| 38 |
const int ne1,
|
| 39 |
const int ne2,
|
| 40 |
const int ne3);
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
template<int D, int parallel_blocks> // D == head size
|
| 43 |
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 44 |
__launch_bounds__(D, 1)
|
|
@@ -83,6 +598,27 @@ static __global__ void flash_attn_combine_results(
|
|
| 83 |
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
| 84 |
}
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
template <int D, int parallel_blocks>
|
| 87 |
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
|
| 88 |
const ggml_tensor * Q = dst->src[0];
|
|
@@ -94,8 +630,6 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
|
|
| 94 |
ggml_tensor * KQV = dst;
|
| 95 |
|
| 96 |
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
| 97 |
-
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
| 98 |
-
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
| 99 |
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
| 100 |
|
| 101 |
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
|
@@ -143,6 +677,7 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
|
|
| 143 |
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
| 144 |
Q->nb[1], Q->nb[2], Q->nb[3],
|
| 145 |
K->nb[1], K->nb[2], K->nb[3],
|
|
|
|
| 146 |
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
| 147 |
);
|
| 148 |
CUDA_CHECK(cudaGetLastError());
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
#include "common.cuh"
|
| 4 |
+
#include "vecdotq.cuh"
|
| 5 |
|
| 6 |
#include <cstdint>
|
| 7 |
|
|
|
|
| 37 |
const int nb11,
|
| 38 |
const int nb12,
|
| 39 |
const int nb13,
|
| 40 |
+
const int nb21,
|
| 41 |
+
const int nb22,
|
| 42 |
+
const int nb23,
|
| 43 |
const int ne0,
|
| 44 |
const int ne1,
|
| 45 |
const int ne2,
|
| 46 |
const int ne3);
|
| 47 |
|
| 48 |
+
typedef half (*vec_dot_KQ_f16_t)(
|
| 49 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
| 50 |
+
typedef float (*vec_dot_KQ_f32_t)(
|
| 51 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
| 52 |
+
|
| 53 |
+
template<typename T, int D>
|
| 54 |
+
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
|
| 55 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
| 56 |
+
#if __CUDA_ARCH__ > MIN_CC_DP4A
|
| 57 |
+
|
| 58 |
+
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
|
| 59 |
+
GGML_UNUSED(Q_v);
|
| 60 |
+
|
| 61 |
+
half sum = 0.0f;
|
| 62 |
+
|
| 63 |
+
#pragma unroll
|
| 64 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
| 65 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 66 |
+
|
| 67 |
+
const int ib = k_KQ / QI8_1;
|
| 68 |
+
const int iqs4 = k_KQ % QI4_0;
|
| 69 |
+
const int shift = k_KQ & (QI8_1/2);
|
| 70 |
+
|
| 71 |
+
const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
| 72 |
+
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
| 73 |
+
|
| 74 |
+
const int sumi = __dp4a(v, u, 0);
|
| 75 |
+
|
| 76 |
+
#if FP16_AVAILABLE
|
| 77 |
+
if (std::is_same<T, half>::value) {
|
| 78 |
+
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
| 79 |
+
|
| 80 |
+
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
|
| 81 |
+
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
|
| 82 |
+
} else
|
| 83 |
+
#endif // FP16_AVAILABLE
|
| 84 |
+
{
|
| 85 |
+
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
| 86 |
+
|
| 87 |
+
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
return sum;
|
| 92 |
+
#else
|
| 93 |
+
GGML_UNUSED(K_c);
|
| 94 |
+
GGML_UNUSED(Q_v);
|
| 95 |
+
GGML_UNUSED(Q_q8);
|
| 96 |
+
GGML_UNUSED(Q_ds_v);
|
| 97 |
+
NO_DEVICE_CODE;
|
| 98 |
+
#endif // __CUDA_ARCH__ > MIN_CC_DP4A
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
template<typename T, int D>
|
| 102 |
+
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
|
| 103 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
| 104 |
+
#if __CUDA_ARCH__ > MIN_CC_DP4A
|
| 105 |
+
|
| 106 |
+
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
|
| 107 |
+
GGML_UNUSED(Q_v);
|
| 108 |
+
|
| 109 |
+
T sum = 0.0f;
|
| 110 |
+
|
| 111 |
+
#pragma unroll
|
| 112 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
| 113 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 114 |
+
|
| 115 |
+
const int ib = k_KQ / QI8_1;
|
| 116 |
+
const int iqs4 = k_KQ % QI4_1;
|
| 117 |
+
const int shift = k_KQ & (QI8_1/2);
|
| 118 |
+
|
| 119 |
+
const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
| 120 |
+
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
| 121 |
+
|
| 122 |
+
const int sumi = __dp4a(v, u, 0);
|
| 123 |
+
|
| 124 |
+
#if FP16_AVAILABLE
|
| 125 |
+
if (std::is_same<T, half>::value) {
|
| 126 |
+
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
| 127 |
+
|
| 128 |
+
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
|
| 129 |
+
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
|
| 130 |
+
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
|
| 131 |
+
} else
|
| 132 |
+
#endif // FP16_AVAILABLE
|
| 133 |
+
{
|
| 134 |
+
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
| 135 |
+
|
| 136 |
+
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
|
| 137 |
+
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
|
| 138 |
+
|
| 139 |
+
sum += (T) (sumid4d8 + m4s8scaled);
|
| 140 |
+
}
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
return sum;
|
| 144 |
+
#else
|
| 145 |
+
GGML_UNUSED(K_c);
|
| 146 |
+
GGML_UNUSED(Q_v);
|
| 147 |
+
GGML_UNUSED(Q_q8);
|
| 148 |
+
GGML_UNUSED(Q_ds_v);
|
| 149 |
+
NO_DEVICE_CODE;
|
| 150 |
+
#endif // __CUDA_ARCH__ > MIN_CC_DP4A
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
template<typename T, int D>
|
| 154 |
+
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
|
| 155 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
| 156 |
+
#if __CUDA_ARCH__ > MIN_CC_DP4A
|
| 157 |
+
|
| 158 |
+
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
|
| 159 |
+
GGML_UNUSED(Q_v);
|
| 160 |
+
|
| 161 |
+
T sum = 0.0f;
|
| 162 |
+
|
| 163 |
+
#pragma unroll
|
| 164 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
| 165 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 166 |
+
|
| 167 |
+
const int ib = k_KQ / QI8_1;
|
| 168 |
+
const int iqs4 = k_KQ % QI5_0;
|
| 169 |
+
const int iqs8 = k_KQ % QI8_1;
|
| 170 |
+
const int shift = k_KQ & (QI8_1/2);
|
| 171 |
+
|
| 172 |
+
int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
| 173 |
+
const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
|
| 174 |
+
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
| 175 |
+
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
| 176 |
+
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
| 177 |
+
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
| 178 |
+
|
| 179 |
+
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
| 180 |
+
|
| 181 |
+
const int sumi = __dp4a(v, u, 0);
|
| 182 |
+
|
| 183 |
+
#if FP16_AVAILABLE
|
| 184 |
+
if (std::is_same<T, half>::value) {
|
| 185 |
+
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
| 186 |
+
|
| 187 |
+
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
|
| 188 |
+
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
|
| 189 |
+
} else
|
| 190 |
+
#endif // FP16_AVAILABLE
|
| 191 |
+
{
|
| 192 |
+
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
| 193 |
+
|
| 194 |
+
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
return sum;
|
| 199 |
+
#else
|
| 200 |
+
GGML_UNUSED(K_c);
|
| 201 |
+
GGML_UNUSED(Q_v);
|
| 202 |
+
GGML_UNUSED(Q_q8);
|
| 203 |
+
GGML_UNUSED(Q_ds_v);
|
| 204 |
+
NO_DEVICE_CODE;
|
| 205 |
+
#endif // __CUDA_ARCH__ > MIN_CC_DP4A
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
template<typename T, int D>
|
| 209 |
+
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
|
| 210 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
| 211 |
+
#if __CUDA_ARCH__ > MIN_CC_DP4A
|
| 212 |
+
|
| 213 |
+
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
|
| 214 |
+
GGML_UNUSED(Q_v);
|
| 215 |
+
|
| 216 |
+
T sum = 0.0f;
|
| 217 |
+
|
| 218 |
+
#pragma unroll
|
| 219 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
| 220 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 221 |
+
|
| 222 |
+
const int ib = k_KQ / QI8_1;
|
| 223 |
+
const int iqs4 = k_KQ % QI5_1;
|
| 224 |
+
const int iqs8 = k_KQ % QI8_1;
|
| 225 |
+
const int shift = k_KQ & (QI8_1/2);
|
| 226 |
+
|
| 227 |
+
int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
| 228 |
+
const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
|
| 229 |
+
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
| 230 |
+
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
| 231 |
+
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
| 232 |
+
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
| 233 |
+
|
| 234 |
+
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
| 235 |
+
|
| 236 |
+
const int sumi = __dp4a(v, u, 0);
|
| 237 |
+
|
| 238 |
+
#if FP16_AVAILABLE
|
| 239 |
+
if (std::is_same<T, half>::value) {
|
| 240 |
+
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
| 241 |
+
|
| 242 |
+
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
|
| 243 |
+
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
|
| 244 |
+
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
|
| 245 |
+
} else
|
| 246 |
+
#endif // FP16_AVAILABLE
|
| 247 |
+
{
|
| 248 |
+
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
| 249 |
+
|
| 250 |
+
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
|
| 251 |
+
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
|
| 252 |
+
|
| 253 |
+
sum += (T) (sumid5d8 + m5s8scaled);
|
| 254 |
+
}
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
return sum;
|
| 258 |
+
#else
|
| 259 |
+
GGML_UNUSED(K_c);
|
| 260 |
+
GGML_UNUSED(Q_v);
|
| 261 |
+
GGML_UNUSED(Q_q8);
|
| 262 |
+
GGML_UNUSED(Q_ds_v);
|
| 263 |
+
NO_DEVICE_CODE;
|
| 264 |
+
#endif // __CUDA_ARCH__ > MIN_CC_DP4A
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
template <typename T, int D>
|
| 268 |
+
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
|
| 269 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
| 270 |
+
#if __CUDA_ARCH__ > MIN_CC_DP4A
|
| 271 |
+
|
| 272 |
+
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
|
| 273 |
+
GGML_UNUSED(Q_v);
|
| 274 |
+
|
| 275 |
+
T sum = 0.0f;
|
| 276 |
+
|
| 277 |
+
#pragma unroll
|
| 278 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
| 279 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 280 |
+
|
| 281 |
+
const int ib = k_KQ / QI8_0;
|
| 282 |
+
const int iqs = k_KQ % QI8_0;
|
| 283 |
+
|
| 284 |
+
const int v = get_int_from_int8(K_q8_0[ib].qs, iqs);
|
| 285 |
+
|
| 286 |
+
T Q_d;
|
| 287 |
+
if (std::is_same<T, half>::value) {
|
| 288 |
+
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
| 289 |
+
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
|
| 290 |
+
} else {
|
| 291 |
+
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
| 292 |
+
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
return sum;
|
| 299 |
+
#else
|
| 300 |
+
GGML_UNUSED(K_c);
|
| 301 |
+
GGML_UNUSED(Q_v);
|
| 302 |
+
GGML_UNUSED(Q_q8);
|
| 303 |
+
GGML_UNUSED(Q_ds_v);
|
| 304 |
+
NO_DEVICE_CODE;
|
| 305 |
+
#endif // __CUDA_ARCH__ > MIN_CC_DP4A
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
template <typename T, int D>
|
| 309 |
+
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
|
| 310 |
+
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
|
| 311 |
+
|
| 312 |
+
const half2 * K_h2 = (const half2 *) K_c;
|
| 313 |
+
GGML_UNUSED(Q_q8);
|
| 314 |
+
GGML_UNUSED(Q_ds_v);
|
| 315 |
+
|
| 316 |
+
#if FP16_AVAILABLE
|
| 317 |
+
if (std::is_same<T, half>::value) {
|
| 318 |
+
const half2 * Q_h2 = (const half2 *) Q_v;
|
| 319 |
+
|
| 320 |
+
half2 sum2 = make_half2(0.0f, 0.0f);
|
| 321 |
+
|
| 322 |
+
#pragma unroll
|
| 323 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
| 324 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 325 |
+
|
| 326 |
+
const half2 K_ik = K_h2[k_KQ];
|
| 327 |
+
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
return __low2half(sum2) + __high2half(sum2);
|
| 331 |
+
}
|
| 332 |
+
#endif // FP16_AVAILABLE
|
| 333 |
+
|
| 334 |
+
const float2 * Q_f2 = (const float2 *) Q_v;
|
| 335 |
+
|
| 336 |
+
float sum = 0.0f;
|
| 337 |
+
|
| 338 |
+
#pragma unroll
|
| 339 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
| 340 |
+
const int k_KQ = k_KQ_0 + threadIdx.x;
|
| 341 |
+
|
| 342 |
+
const half2 K_ik = K_h2[k_KQ];
|
| 343 |
+
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
|
| 344 |
+
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
return sum;
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
template <typename Tds>
|
| 351 |
+
static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
| 352 |
+
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
|
| 353 |
+
|
| 354 |
+
float vals[sizeof(int)] = {0.0f};
|
| 355 |
+
#pragma unroll
|
| 356 |
+
for (int l = 0; l < sizeof(int); ++l) {
|
| 357 |
+
vals[l] = scale * x[4*threadIdx.x + l];
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
float amax = fabsf(vals[0]);
|
| 361 |
+
float sum = vals[0];
|
| 362 |
+
#pragma unroll
|
| 363 |
+
for (int l = 1; l < sizeof(int); ++l) {
|
| 364 |
+
amax = fmaxf(amax, fabsf(vals[l]));
|
| 365 |
+
sum += vals[l];
|
| 366 |
+
}
|
| 367 |
+
#pragma unroll
|
| 368 |
+
for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
|
| 369 |
+
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
|
| 370 |
+
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
const float d = amax / 127;
|
| 374 |
+
int q32 = 0;
|
| 375 |
+
int8_t * q8 = (int8_t *) &q32;
|
| 376 |
+
|
| 377 |
+
if (d != 0.0f) {
|
| 378 |
+
#pragma unroll
|
| 379 |
+
for (int l = 0; l < sizeof(int); ++l) {
|
| 380 |
+
q8[l] = roundf(vals[l] / d);
|
| 381 |
+
}
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
yq32[threadIdx.x] = q32;
|
| 385 |
+
if (threadIdx.x % QI8_1 == 0) {
|
| 386 |
+
if (std::is_same<Tds, half2>::value) {
|
| 387 |
+
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
|
| 388 |
+
} else {
|
| 389 |
+
((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
|
| 390 |
+
}
|
| 391 |
+
}
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
|
| 395 |
+
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
|
| 396 |
+
|
| 397 |
+
template <typename T>
|
| 398 |
+
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
|
| 399 |
+
const block_q4_0 * x = (const block_q4_0 *) vx;
|
| 400 |
+
|
| 401 |
+
const int64_t ib = i / QK4_0;
|
| 402 |
+
const int iqs = i % (QK4_0/2);
|
| 403 |
+
const int shift = (i % QK4_0) / (QK4_0/2);
|
| 404 |
+
|
| 405 |
+
const T d = x[ib].d;
|
| 406 |
+
const int q0 = x[ib].qs[iqs];
|
| 407 |
+
const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
|
| 408 |
+
|
| 409 |
+
#if FP16_AVAILABLE
|
| 410 |
+
if (std::is_same<T, half>::value) {
|
| 411 |
+
return ((half) d)*((half) q);
|
| 412 |
+
}
|
| 413 |
+
#endif // FP16_AVAILABLE
|
| 414 |
+
|
| 415 |
+
return ((float) d)*((float) q);
|
| 416 |
+
}
|
| 417 |
+
|
| 418 |
+
template <typename T>
|
| 419 |
+
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
|
| 420 |
+
const block_q4_1 * x = (const block_q4_1 *) vx;
|
| 421 |
+
|
| 422 |
+
const int64_t ib = i / QK4_1;
|
| 423 |
+
const int iqs = i % (QK4_1/2);
|
| 424 |
+
const int shift = (i % QK4_1) / (QK4_1/2);
|
| 425 |
+
|
| 426 |
+
const half2 dm = x[ib].dm;
|
| 427 |
+
const int q0 = x[ib].qs[iqs];
|
| 428 |
+
const int q = ((q0 >> (4*shift)) & 0x0F);
|
| 429 |
+
|
| 430 |
+
#if FP16_AVAILABLE
|
| 431 |
+
if (std::is_same<T, half>::value) {
|
| 432 |
+
return __low2half(dm)*((half) q) + __high2half(dm);
|
| 433 |
+
}
|
| 434 |
+
#endif // FP16_AVAILABLE
|
| 435 |
+
|
| 436 |
+
return __low2float(dm)*((float) q) + __high2float(dm);
|
| 437 |
+
}
|
| 438 |
+
|
| 439 |
+
template <typename T>
|
| 440 |
+
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
|
| 441 |
+
const block_q5_0 * x = (const block_q5_0 *) vx;
|
| 442 |
+
|
| 443 |
+
const int64_t ib = i / QK5_0;
|
| 444 |
+
const int idq = i % QK5_0;
|
| 445 |
+
const int iqs = i % (QK5_0/2);
|
| 446 |
+
const int shift = (i % QK5_0) / (QK5_0/2);
|
| 447 |
+
|
| 448 |
+
const T d = x[ib].d;
|
| 449 |
+
const int ql0 = x[ib].qs[iqs];
|
| 450 |
+
const int qh0 = get_int_from_uint8(x[ib].qh, 0);
|
| 451 |
+
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
| 452 |
+
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
| 453 |
+
const int q = (ql | qh) - 16;
|
| 454 |
+
|
| 455 |
+
#if FP16_AVAILABLE
|
| 456 |
+
if (std::is_same<T, half>::value) {
|
| 457 |
+
return ((half) d)*((half) q);
|
| 458 |
+
}
|
| 459 |
+
#endif // FP16_AVAILABLE
|
| 460 |
+
|
| 461 |
+
return ((float) d)*((float) q);
|
| 462 |
+
}
|
| 463 |
+
|
| 464 |
+
template <typename T>
|
| 465 |
+
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
|
| 466 |
+
const block_q5_1 * x = (const block_q5_1 *) vx;
|
| 467 |
+
|
| 468 |
+
const int64_t ib = i / QK5_1;
|
| 469 |
+
const int idq = i % QK5_1;
|
| 470 |
+
const int iqs = i % (QK5_1/2);
|
| 471 |
+
const int shift = (i % QK5_1) / (QK5_1/2);
|
| 472 |
+
|
| 473 |
+
const half2 dm = x[ib].dm;
|
| 474 |
+
const int ql0 = x[ib].qs[iqs];
|
| 475 |
+
const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0);
|
| 476 |
+
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
| 477 |
+
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
| 478 |
+
const int q = (ql | qh);
|
| 479 |
+
|
| 480 |
+
#if FP16_AVAILABLE
|
| 481 |
+
if (std::is_same<T, half>::value) {
|
| 482 |
+
return __low2half(dm)*((half) q) + __high2half(dm);
|
| 483 |
+
}
|
| 484 |
+
#endif // FP16_AVAILABLE
|
| 485 |
+
|
| 486 |
+
return __low2float(dm)*((float) q) + __high2float(dm);
|
| 487 |
+
}
|
| 488 |
+
|
| 489 |
+
template <typename T>
|
| 490 |
+
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
|
| 491 |
+
const block_q8_0 * x = (const block_q8_0 *) vx;
|
| 492 |
+
|
| 493 |
+
const int64_t ib = i / QK8_0;
|
| 494 |
+
const int iqs = i % QK8_0;
|
| 495 |
+
|
| 496 |
+
const T d = x[ib].d;
|
| 497 |
+
const int q = x[ib].qs[iqs];
|
| 498 |
+
|
| 499 |
+
#if FP16_AVAILABLE
|
| 500 |
+
if (std::is_same<T, half>::value) {
|
| 501 |
+
return ((half) d)*((half) q);
|
| 502 |
+
}
|
| 503 |
+
#endif // FP16_AVAILABLE
|
| 504 |
+
|
| 505 |
+
return ((float) d)*((float) q);
|
| 506 |
+
}
|
| 507 |
+
|
| 508 |
+
template <typename T>
|
| 509 |
+
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
|
| 510 |
+
const half * x = (const half *) vx;
|
| 511 |
+
|
| 512 |
+
return x[i];
|
| 513 |
+
}
|
| 514 |
+
|
| 515 |
+
template <int D>
|
| 516 |
+
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
|
| 517 |
+
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
|
| 518 |
+
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
|
| 519 |
+
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
|
| 520 |
+
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
|
| 521 |
+
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
|
| 522 |
+
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
|
| 523 |
+
nullptr;
|
| 524 |
+
}
|
| 525 |
+
|
| 526 |
+
template <int D>
|
| 527 |
+
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
|
| 528 |
+
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
|
| 529 |
+
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
|
| 530 |
+
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
|
| 531 |
+
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
|
| 532 |
+
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
|
| 533 |
+
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
|
| 534 |
+
nullptr;
|
| 535 |
+
}
|
| 536 |
+
|
| 537 |
+
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
|
| 538 |
+
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
|
| 539 |
+
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
|
| 540 |
+
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
|
| 541 |
+
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
|
| 542 |
+
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
|
| 543 |
+
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
|
| 544 |
+
nullptr;
|
| 545 |
+
}
|
| 546 |
+
|
| 547 |
+
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
| 548 |
+
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
|
| 549 |
+
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
|
| 550 |
+
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
|
| 551 |
+
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
|
| 552 |
+
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
|
| 553 |
+
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
|
| 554 |
+
nullptr;
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
template<int D, int parallel_blocks> // D == head size
|
| 558 |
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 559 |
__launch_bounds__(D, 1)
|
|
|
|
| 598 |
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
| 599 |
}
|
| 600 |
|
| 601 |
+
static void on_no_fattn_vec_case(const int D) {
|
| 602 |
+
if (D == 64) {
|
| 603 |
+
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
|
| 604 |
+
fprintf(stderr, "By default only f16 KV cache is supported.\n");
|
| 605 |
+
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
|
| 606 |
+
GGML_ASSERT(false);
|
| 607 |
+
} else if (D == 128) {
|
| 608 |
+
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
|
| 609 |
+
fprintf(stderr, "Supported combinations:\n");
|
| 610 |
+
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
|
| 611 |
+
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
|
| 612 |
+
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
|
| 613 |
+
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
| 614 |
+
GGML_ASSERT(false);
|
| 615 |
+
} else {
|
| 616 |
+
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
|
| 617 |
+
fprintf(stderr, "Only f16 is supported.\n");
|
| 618 |
+
GGML_ASSERT(false);
|
| 619 |
+
}
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
template <int D, int parallel_blocks>
|
| 623 |
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
|
| 624 |
const ggml_tensor * Q = dst->src[0];
|
|
|
|
| 630 |
ggml_tensor * KQV = dst;
|
| 631 |
|
| 632 |
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
| 633 |
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
| 634 |
|
| 635 |
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
|
|
|
| 677 |
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
| 678 |
Q->nb[1], Q->nb[2], Q->nb[3],
|
| 679 |
K->nb[1], K->nb[2], K->nb[3],
|
| 680 |
+
V->nb[1], V->nb[2], V->nb[3],
|
| 681 |
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
| 682 |
);
|
| 683 |
CUDA_CHECK(cudaGetLastError());
|
ggml-cuda/fattn-tile-f16.cu
CHANGED
|
@@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f16(
|
|
| 36 |
const int nb11,
|
| 37 |
const int nb12,
|
| 38 |
const int nb13,
|
|
|
|
|
|
|
|
|
|
| 39 |
const int ne0,
|
| 40 |
const int ne1,
|
| 41 |
const int ne2,
|
|
|
|
| 36 |
const int nb11,
|
| 37 |
const int nb12,
|
| 38 |
const int nb13,
|
| 39 |
+
const int nb21,
|
| 40 |
+
const int nb22,
|
| 41 |
+
const int nb23,
|
| 42 |
const int ne0,
|
| 43 |
const int ne1,
|
| 44 |
const int ne2,
|
ggml-cuda/fattn-tile-f32.cu
CHANGED
|
@@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f32(
|
|
| 36 |
const int nb11,
|
| 37 |
const int nb12,
|
| 38 |
const int nb13,
|
|
|
|
|
|
|
|
|
|
| 39 |
const int ne0,
|
| 40 |
const int ne1,
|
| 41 |
const int ne2,
|
|
|
|
| 36 |
const int nb11,
|
| 37 |
const int nb12,
|
| 38 |
const int nb13,
|
| 39 |
+
const int nb21,
|
| 40 |
+
const int nb22,
|
| 41 |
+
const int nb23,
|
| 42 |
const int ne0,
|
| 43 |
const int ne1,
|
| 44 |
const int ne2,
|
ggml-cuda/fattn-vec-f16.cuh
CHANGED
|
@@ -1,5 +1,395 @@
|
|
| 1 |
#include "common.cuh"
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#include "common.cuh"
|
| 2 |
+
#include "fattn-common.cuh"
|
| 3 |
|
| 4 |
+
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
| 5 |
+
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 6 |
+
__launch_bounds__(D, 1)
|
| 7 |
+
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 8 |
+
static __global__ void flash_attn_vec_ext_f16(
|
| 9 |
+
const char * __restrict__ Q,
|
| 10 |
+
const char * __restrict__ K,
|
| 11 |
+
const char * __restrict__ V,
|
| 12 |
+
const char * __restrict__ mask,
|
| 13 |
+
float * __restrict__ dst,
|
| 14 |
+
float2 * __restrict__ dst_meta,
|
| 15 |
+
const float scale,
|
| 16 |
+
const float max_bias,
|
| 17 |
+
const float m0,
|
| 18 |
+
const float m1,
|
| 19 |
+
const uint32_t n_head_log2,
|
| 20 |
+
const int ne00,
|
| 21 |
+
const int ne01,
|
| 22 |
+
const int ne02,
|
| 23 |
+
const int ne03,
|
| 24 |
+
const int ne10,
|
| 25 |
+
const int ne11,
|
| 26 |
+
const int ne12,
|
| 27 |
+
const int ne13,
|
| 28 |
+
const int ne31,
|
| 29 |
+
const int nb31,
|
| 30 |
+
const int nb01,
|
| 31 |
+
const int nb02,
|
| 32 |
+
const int nb03,
|
| 33 |
+
const int nb11,
|
| 34 |
+
const int nb12,
|
| 35 |
+
const int nb13,
|
| 36 |
+
const int nb21,
|
| 37 |
+
const int nb22,
|
| 38 |
+
const int nb23,
|
| 39 |
+
const int ne0,
|
| 40 |
+
const int ne1,
|
| 41 |
+
const int ne2,
|
| 42 |
+
const int ne3) {
|
| 43 |
+
#if FP16_AVAILABLE
|
| 44 |
+
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
| 45 |
|
| 46 |
+
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
|
| 47 |
+
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
| 48 |
+
constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
|
| 49 |
+
|
| 50 |
+
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
| 51 |
+
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
| 52 |
+
|
| 53 |
+
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
| 54 |
+
Q += nb02* blockIdx.y + nb01*ic0;
|
| 55 |
+
K += nb12*(blockIdx.y / gqa_ratio);
|
| 56 |
+
V += nb22*(blockIdx.y / gqa_ratio);
|
| 57 |
+
|
| 58 |
+
const half * maskh = (const half *) mask + ne11*ic0;
|
| 59 |
+
|
| 60 |
+
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
| 61 |
+
const half slopeh = __float2half(slopef);
|
| 62 |
+
|
| 63 |
+
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
| 64 |
+
constexpr int nwarps = D / WARP_SIZE;
|
| 65 |
+
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
| 66 |
+
__builtin_assume(tid < D);
|
| 67 |
+
|
| 68 |
+
__shared__ half KQ[ncols*D];
|
| 69 |
+
half2 * KQ2 = (half2 *) KQ;
|
| 70 |
+
|
| 71 |
+
half kqmax[ncols];
|
| 72 |
+
#pragma unroll
|
| 73 |
+
for (int j = 0; j < ncols; ++j) {
|
| 74 |
+
kqmax[j] = -HALF_MAX_HALF;
|
| 75 |
+
}
|
| 76 |
+
half kqsum[ncols] = {0.0f};
|
| 77 |
+
|
| 78 |
+
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
| 79 |
+
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
| 80 |
+
#pragma unroll
|
| 81 |
+
for (int j = 0; j < ncols; ++j) {
|
| 82 |
+
if (threadIdx.y == 0) {
|
| 83 |
+
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
| 84 |
+
kqsum_shared[j][threadIdx.x] = 0.0f;
|
| 85 |
+
}
|
| 86 |
+
}
|
| 87 |
+
__syncthreads();
|
| 88 |
+
|
| 89 |
+
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
| 90 |
+
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
| 91 |
+
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
|
| 92 |
+
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
| 93 |
+
if (Q_q8_1) {
|
| 94 |
+
#pragma unroll
|
| 95 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 96 |
+
const int j = j0 + threadIdx.y;
|
| 97 |
+
|
| 98 |
+
if (j0 + nwarps > ncols && j >= ncols) {
|
| 99 |
+
break;
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
// Reuse KQ as temporary storage for converting Q to q8_1:
|
| 103 |
+
int * tmp_q_i32 = (int *) &KQ[j*D];
|
| 104 |
+
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
| 105 |
+
|
| 106 |
+
// Set memory to zero if out of bounds:
|
| 107 |
+
if (ncols > 2 && ic0 + j >= ne01) {
|
| 108 |
+
#pragma unroll
|
| 109 |
+
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
| 110 |
+
const int i = i0 + threadIdx.x;
|
| 111 |
+
|
| 112 |
+
tmp_q_i32[i] = 0;
|
| 113 |
+
}
|
| 114 |
+
if (threadIdx.x < D/QK8_1) {
|
| 115 |
+
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
|
| 116 |
+
}
|
| 117 |
+
continue;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
const float * Q_f = (const float *) (Q + j*nb01);
|
| 121 |
+
#pragma unroll
|
| 122 |
+
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
| 123 |
+
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
__syncthreads();
|
| 128 |
+
|
| 129 |
+
#pragma unroll
|
| 130 |
+
for (int j = 0; j < ncols; ++j) {
|
| 131 |
+
int * tmp_q_i32 = (int *) &KQ[j*D];
|
| 132 |
+
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
| 133 |
+
|
| 134 |
+
#pragma unroll
|
| 135 |
+
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
| 136 |
+
const int i = i0 + threadIdx.x;
|
| 137 |
+
|
| 138 |
+
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
| 139 |
+
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
| 140 |
+
}
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
__syncthreads();
|
| 144 |
+
} else {
|
| 145 |
+
#pragma unroll
|
| 146 |
+
for (int j = 0; j < ncols; ++j) {
|
| 147 |
+
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
| 148 |
+
|
| 149 |
+
#pragma unroll
|
| 150 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
| 151 |
+
const int i = i0 + threadIdx.x;
|
| 152 |
+
|
| 153 |
+
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
| 154 |
+
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
| 155 |
+
}
|
| 156 |
+
}
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
#pragma unroll
|
| 161 |
+
for (int j = 0; j < ncols; ++j) {
|
| 162 |
+
KQ[j*D + tid] = -HALF_MAX_HALF;
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
| 166 |
+
|
| 167 |
+
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
| 168 |
+
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
| 169 |
+
// Calculate KQ tile and keep track of new maximum KQ values:
|
| 170 |
+
|
| 171 |
+
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
| 172 |
+
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
| 173 |
+
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
| 174 |
+
half kqmax_new = kqmax[0];
|
| 175 |
+
half kqmax_new_arr[ncols];
|
| 176 |
+
#pragma unroll
|
| 177 |
+
for (int j = 0; j < ncols; ++j) {
|
| 178 |
+
kqmax_new_arr[j] = kqmax[j];
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
#pragma unroll
|
| 182 |
+
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
| 183 |
+
const int i_KQ = i_KQ_0 + threadIdx.y;
|
| 184 |
+
|
| 185 |
+
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
| 186 |
+
break;
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
#pragma unroll
|
| 190 |
+
for (int j = 0; j < ncols; ++j) {
|
| 191 |
+
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
| 192 |
+
sum = warp_reduce_sum(sum);
|
| 193 |
+
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
| 194 |
+
|
| 195 |
+
if (ncols == 1) {
|
| 196 |
+
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
| 197 |
+
} else {
|
| 198 |
+
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
if (threadIdx.x == 0) {
|
| 202 |
+
KQ[j*D + i_KQ] = sum;
|
| 203 |
+
}
|
| 204 |
+
}
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
#pragma unroll
|
| 208 |
+
for (int j = 0; j < ncols; ++j) {
|
| 209 |
+
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
| 210 |
+
|
| 211 |
+
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
| 212 |
+
if (threadIdx.x == 0) {
|
| 213 |
+
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
| 214 |
+
}
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
__syncthreads();
|
| 218 |
+
|
| 219 |
+
#pragma unroll
|
| 220 |
+
for (int j = 0; j < ncols; ++j) {
|
| 221 |
+
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
| 222 |
+
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
| 223 |
+
|
| 224 |
+
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
| 225 |
+
kqmax[j] = kqmax_new_j;
|
| 226 |
+
|
| 227 |
+
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
| 228 |
+
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
| 229 |
+
KQ[j*D + tid] = val;
|
| 230 |
+
|
| 231 |
+
VKQ[j] *= __half2half2(KQ_max_scale);
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
__syncthreads();
|
| 235 |
+
|
| 236 |
+
#pragma unroll
|
| 237 |
+
for (int k0 = 0; k0 < D; k0 += 2) {
|
| 238 |
+
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
| 239 |
+
break;
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
half2 V_k;
|
| 243 |
+
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
|
| 244 |
+
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
|
| 245 |
+
#pragma unroll
|
| 246 |
+
for (int j = 0; j < ncols; ++j) {
|
| 247 |
+
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
__syncthreads();
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
#pragma unroll
|
| 255 |
+
for (int j = 0; j < ncols; ++j) {
|
| 256 |
+
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
| 257 |
+
if (threadIdx.x == 0) {
|
| 258 |
+
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
| 259 |
+
}
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
__syncthreads();
|
| 263 |
+
|
| 264 |
+
#pragma unroll
|
| 265 |
+
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
| 266 |
+
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
| 267 |
+
break;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
| 271 |
+
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
| 272 |
+
|
| 273 |
+
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
| 274 |
+
if (parallel_blocks == 1) {
|
| 275 |
+
dst_val /= kqsum[j_VKQ];
|
| 276 |
+
}
|
| 277 |
+
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
| 278 |
+
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
| 282 |
+
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
| 283 |
+
}
|
| 284 |
+
#else
|
| 285 |
+
NO_DEVICE_CODE;
|
| 286 |
+
#endif // FP16_AVAILABLE
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
| 290 |
+
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 291 |
+
constexpr int nwarps = D/WARP_SIZE;
|
| 292 |
+
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
| 293 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
template <int D, ggml_type type_K, ggml_type type_V>
|
| 297 |
+
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 298 |
+
ggml_tensor * KQV = dst;
|
| 299 |
+
ggml_tensor * Q = dst->src[0];
|
| 300 |
+
ggml_tensor * K = dst->src[1];
|
| 301 |
+
ggml_tensor * V = dst->src[2];
|
| 302 |
+
|
| 303 |
+
const int32_t precision = KQV->op_params[2];
|
| 304 |
+
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
| 305 |
+
|
| 306 |
+
GGML_ASSERT(K->type == type_K);
|
| 307 |
+
GGML_ASSERT(V->type == type_V);
|
| 308 |
+
|
| 309 |
+
if (Q->ne[1] == 1) {
|
| 310 |
+
constexpr int cols_per_block = 1;
|
| 311 |
+
constexpr int parallel_blocks = 4;
|
| 312 |
+
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 313 |
+
return;
|
| 314 |
+
}
|
| 315 |
+
|
| 316 |
+
if (Q->ne[1] == 2) {
|
| 317 |
+
constexpr int cols_per_block = 2;
|
| 318 |
+
constexpr int parallel_blocks = 4;
|
| 319 |
+
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 320 |
+
return;
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
if (Q->ne[1] <= 4) {
|
| 324 |
+
constexpr int cols_per_block = 4;
|
| 325 |
+
constexpr int parallel_blocks = 4;
|
| 326 |
+
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 327 |
+
return;
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
if (Q->ne[1] <= 8) {
|
| 331 |
+
constexpr int cols_per_block = 8;
|
| 332 |
+
constexpr int parallel_blocks = 4;
|
| 333 |
+
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 334 |
+
return;
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
constexpr int cols_per_block = 8;
|
| 338 |
+
constexpr int parallel_blocks = 1;
|
| 339 |
+
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 340 |
+
}
|
| 341 |
+
|
| 342 |
+
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
| 343 |
+
template void ggml_cuda_flash_attn_ext_vec_f16_case \
|
| 344 |
+
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
| 345 |
+
|
| 346 |
+
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
| 347 |
+
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
| 348 |
+
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
| 349 |
+
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
| 350 |
+
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
| 351 |
+
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
| 352 |
+
|
| 353 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
| 354 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
| 355 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
| 356 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
| 357 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
| 358 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
| 359 |
+
|
| 360 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
| 361 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
| 362 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
| 363 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
| 364 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
| 365 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
| 366 |
+
|
| 367 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
| 368 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
| 369 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
| 370 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
| 371 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
| 372 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
| 373 |
+
|
| 374 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
| 375 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
| 376 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
| 377 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
| 378 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
| 379 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
| 380 |
+
|
| 381 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
| 382 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
| 383 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
| 384 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
| 385 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
| 386 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
| 387 |
+
|
| 388 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
| 389 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
| 390 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
| 391 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
| 392 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
| 393 |
+
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
| 394 |
+
|
| 395 |
+
extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
ggml-cuda/fattn-vec-f32.cuh
CHANGED
|
@@ -1,3 +1,376 @@
|
|
| 1 |
#include "common.cuh"
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#include "common.cuh"
|
| 2 |
+
#include "fattn-common.cuh"
|
| 3 |
|
| 4 |
+
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
| 5 |
+
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 6 |
+
__launch_bounds__(D, 1)
|
| 7 |
+
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 8 |
+
static __global__ void flash_attn_vec_ext_f32(
|
| 9 |
+
const char * __restrict__ Q,
|
| 10 |
+
const char * __restrict__ K,
|
| 11 |
+
const char * __restrict__ V,
|
| 12 |
+
const char * __restrict__ mask,
|
| 13 |
+
float * __restrict__ dst,
|
| 14 |
+
float2 * __restrict__ dst_meta,
|
| 15 |
+
const float scale,
|
| 16 |
+
const float max_bias,
|
| 17 |
+
const float m0,
|
| 18 |
+
const float m1,
|
| 19 |
+
const uint32_t n_head_log2,
|
| 20 |
+
const int ne00,
|
| 21 |
+
const int ne01,
|
| 22 |
+
const int ne02,
|
| 23 |
+
const int ne03,
|
| 24 |
+
const int ne10,
|
| 25 |
+
const int ne11,
|
| 26 |
+
const int ne12,
|
| 27 |
+
const int ne13,
|
| 28 |
+
const int ne31,
|
| 29 |
+
const int nb31,
|
| 30 |
+
const int nb01,
|
| 31 |
+
const int nb02,
|
| 32 |
+
const int nb03,
|
| 33 |
+
const int nb11,
|
| 34 |
+
const int nb12,
|
| 35 |
+
const int nb13,
|
| 36 |
+
const int nb21,
|
| 37 |
+
const int nb22,
|
| 38 |
+
const int nb23,
|
| 39 |
+
const int ne0,
|
| 40 |
+
const int ne1,
|
| 41 |
+
const int ne2,
|
| 42 |
+
const int ne3) {
|
| 43 |
+
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
| 44 |
+
|
| 45 |
+
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
|
| 46 |
+
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
| 47 |
+
constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
|
| 48 |
+
|
| 49 |
+
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
| 50 |
+
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
| 51 |
+
|
| 52 |
+
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
| 53 |
+
Q += nb02* blockIdx.y + nb01*ic0;
|
| 54 |
+
K += nb12*(blockIdx.y / gqa_ratio);
|
| 55 |
+
V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape
|
| 56 |
+
const half * maskh = (const half *) mask + ne11*ic0;
|
| 57 |
+
|
| 58 |
+
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
| 59 |
+
|
| 60 |
+
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
| 61 |
+
constexpr int nwarps = D / WARP_SIZE;
|
| 62 |
+
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
| 63 |
+
__builtin_assume(tid < D);
|
| 64 |
+
|
| 65 |
+
__shared__ float KQ[ncols*D];
|
| 66 |
+
#pragma unroll
|
| 67 |
+
for (int j = 0; j < ncols; ++j) {
|
| 68 |
+
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
float kqmax[ncols];
|
| 72 |
+
#pragma unroll
|
| 73 |
+
for (int j = 0; j < ncols; ++j) {
|
| 74 |
+
kqmax[j] = -FLT_MAX/2.0f;
|
| 75 |
+
}
|
| 76 |
+
float kqsum[ncols] = {0.0f};
|
| 77 |
+
|
| 78 |
+
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
| 79 |
+
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
| 80 |
+
#pragma unroll
|
| 81 |
+
for (int j = 0; j < ncols; ++j) {
|
| 82 |
+
if (threadIdx.y == 0) {
|
| 83 |
+
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
| 84 |
+
kqsum_shared[j][threadIdx.x] = 0.0f;
|
| 85 |
+
}
|
| 86 |
+
}
|
| 87 |
+
__syncthreads();
|
| 88 |
+
|
| 89 |
+
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
| 90 |
+
float2 Q_f2[ncols][D/(2*WARP_SIZE)];
|
| 91 |
+
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
|
| 92 |
+
float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
| 93 |
+
if (Q_q8_1) {
|
| 94 |
+
#pragma unroll
|
| 95 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 96 |
+
const int j = j0 + threadIdx.y;
|
| 97 |
+
|
| 98 |
+
if (j0 + nwarps > ncols && j >= ncols) {
|
| 99 |
+
break;
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
// Reuse KQ as temporary storage for converting Q to q8_1:
|
| 103 |
+
int * tmp_q_i32 = (int *) &KQ[j*D];
|
| 104 |
+
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
| 105 |
+
|
| 106 |
+
// Set memory to zero if out of bounds:
|
| 107 |
+
if (ncols > 2 && ic0 + j >= ne01) {
|
| 108 |
+
#pragma unroll
|
| 109 |
+
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
| 110 |
+
const int i = i0 + threadIdx.x;
|
| 111 |
+
|
| 112 |
+
tmp_q_i32[i] = 0;
|
| 113 |
+
}
|
| 114 |
+
if (threadIdx.x < D/QK8_1) {
|
| 115 |
+
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
|
| 116 |
+
}
|
| 117 |
+
continue;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
const float * Q_f = (const float *) (Q + j*nb01);
|
| 121 |
+
#pragma unroll
|
| 122 |
+
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
| 123 |
+
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
__syncthreads();
|
| 128 |
+
|
| 129 |
+
#pragma unroll
|
| 130 |
+
for (int j = 0; j < ncols; ++j) {
|
| 131 |
+
int * tmp_q_i32 = (int *) &KQ[j*D];
|
| 132 |
+
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
| 133 |
+
|
| 134 |
+
#pragma unroll
|
| 135 |
+
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
| 136 |
+
const int i = i0 + threadIdx.x;
|
| 137 |
+
|
| 138 |
+
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
| 139 |
+
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
| 140 |
+
}
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
__syncthreads();
|
| 144 |
+
} else {
|
| 145 |
+
#pragma unroll
|
| 146 |
+
for (int j = 0; j < ncols; ++j) {
|
| 147 |
+
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
| 148 |
+
#pragma unroll
|
| 149 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
| 150 |
+
const int i = i0 + threadIdx.x;
|
| 151 |
+
|
| 152 |
+
Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
| 153 |
+
Q_f2[j][i0/WARP_SIZE].x *= scale;
|
| 154 |
+
Q_f2[j][i0/WARP_SIZE].y *= scale;
|
| 155 |
+
}
|
| 156 |
+
}
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
float VKQ[ncols] = {0.0f};
|
| 160 |
+
|
| 161 |
+
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
| 162 |
+
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
| 163 |
+
// Calculate KQ tile and keep track of new maximum KQ values:
|
| 164 |
+
|
| 165 |
+
float kqmax_new_arr[ncols];
|
| 166 |
+
#pragma unroll
|
| 167 |
+
for (int j = 0; j < ncols; ++j) {
|
| 168 |
+
kqmax_new_arr[j] = kqmax[j];
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
#pragma unroll
|
| 172 |
+
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
| 173 |
+
const int i_KQ = i_KQ_0 + threadIdx.y;
|
| 174 |
+
|
| 175 |
+
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
| 176 |
+
break;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
#pragma unroll
|
| 180 |
+
for (int j = 0; j < ncols; ++j) {
|
| 181 |
+
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
|
| 182 |
+
sum = warp_reduce_sum(sum);
|
| 183 |
+
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
| 184 |
+
|
| 185 |
+
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
| 186 |
+
|
| 187 |
+
if (threadIdx.x == 0) {
|
| 188 |
+
KQ[j*D + i_KQ] = sum;
|
| 189 |
+
}
|
| 190 |
+
}
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
#pragma unroll
|
| 194 |
+
for (int j = 0; j < ncols; ++j) {
|
| 195 |
+
float kqmax_new_j = kqmax_new_arr[j];
|
| 196 |
+
|
| 197 |
+
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
| 198 |
+
if (threadIdx.x == 0) {
|
| 199 |
+
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
| 200 |
+
}
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
__syncthreads();
|
| 204 |
+
|
| 205 |
+
#pragma unroll
|
| 206 |
+
for (int j = 0; j < ncols; ++j) {
|
| 207 |
+
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
| 208 |
+
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
| 209 |
+
|
| 210 |
+
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
| 211 |
+
kqmax[j] = kqmax_new_j;
|
| 212 |
+
|
| 213 |
+
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
| 214 |
+
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
| 215 |
+
KQ[j*D + tid] = val;
|
| 216 |
+
|
| 217 |
+
VKQ[j] *= KQ_max_scale;
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
__syncthreads();
|
| 221 |
+
|
| 222 |
+
#pragma unroll
|
| 223 |
+
for (int k = 0; k < D; ++k) {
|
| 224 |
+
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
| 225 |
+
break;
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid);
|
| 229 |
+
#pragma unroll
|
| 230 |
+
for (int j = 0; j < ncols; ++j) {
|
| 231 |
+
VKQ[j] += V_ki*KQ[j*D + k];
|
| 232 |
+
}
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
__syncthreads();
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
#pragma unroll
|
| 239 |
+
for (int j = 0; j < ncols; ++j) {
|
| 240 |
+
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
| 241 |
+
if (threadIdx.x == 0) {
|
| 242 |
+
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
| 243 |
+
}
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
__syncthreads();
|
| 247 |
+
|
| 248 |
+
#pragma unroll
|
| 249 |
+
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
| 250 |
+
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
| 251 |
+
break;
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
| 255 |
+
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
| 256 |
+
|
| 257 |
+
float dst_val = VKQ[j_VKQ];
|
| 258 |
+
if (parallel_blocks == 1) {
|
| 259 |
+
dst_val /= kqsum[j_VKQ];
|
| 260 |
+
}
|
| 261 |
+
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
| 262 |
+
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
| 266 |
+
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
| 267 |
+
}
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
| 271 |
+
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 272 |
+
constexpr int nwarps = D/WARP_SIZE;
|
| 273 |
+
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
| 274 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
template <int D, ggml_type type_K, ggml_type type_V>
|
| 278 |
+
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 279 |
+
ggml_tensor * KQV = dst;
|
| 280 |
+
ggml_tensor * Q = dst->src[0];
|
| 281 |
+
ggml_tensor * K = dst->src[1];
|
| 282 |
+
ggml_tensor * V = dst->src[2];
|
| 283 |
+
|
| 284 |
+
const int32_t precision = KQV->op_params[2];
|
| 285 |
+
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
| 286 |
+
|
| 287 |
+
GGML_ASSERT(K->type == type_K);
|
| 288 |
+
GGML_ASSERT(V->type == type_V);
|
| 289 |
+
|
| 290 |
+
if (Q->ne[1] == 1) {
|
| 291 |
+
constexpr int cols_per_block = 1;
|
| 292 |
+
constexpr int parallel_blocks = 4;
|
| 293 |
+
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 294 |
+
return;
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
if (Q->ne[1] == 2) {
|
| 298 |
+
constexpr int cols_per_block = 2;
|
| 299 |
+
constexpr int parallel_blocks = 4;
|
| 300 |
+
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 301 |
+
return;
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
if (Q->ne[1] <= 4) {
|
| 305 |
+
constexpr int cols_per_block = 4;
|
| 306 |
+
constexpr int parallel_blocks = 4;
|
| 307 |
+
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 308 |
+
return;
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
if (Q->ne[1] <= 8) {
|
| 312 |
+
constexpr int cols_per_block = 8;
|
| 313 |
+
constexpr int parallel_blocks = 4;
|
| 314 |
+
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 315 |
+
return;
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
constexpr int cols_per_block = 8;
|
| 319 |
+
constexpr int parallel_blocks = 1;
|
| 320 |
+
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
| 324 |
+
template void ggml_cuda_flash_attn_ext_vec_f32_case \
|
| 325 |
+
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
| 326 |
+
|
| 327 |
+
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
| 328 |
+
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
| 329 |
+
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
| 330 |
+
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
| 331 |
+
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
| 332 |
+
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
| 333 |
+
|
| 334 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
| 335 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
| 336 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
| 337 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
| 338 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
| 339 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
| 340 |
+
|
| 341 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
| 342 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
| 343 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
| 344 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
| 345 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
| 346 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
| 347 |
+
|
| 348 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
| 349 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
| 350 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
| 351 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
| 352 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
| 353 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
| 354 |
+
|
| 355 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
| 356 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
| 357 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
| 358 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
| 359 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
| 360 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
| 361 |
+
|
| 362 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
| 363 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
| 364 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
| 365 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
| 366 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
| 367 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
| 368 |
+
|
| 369 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
| 370 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
| 371 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
| 372 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
| 373 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
| 374 |
+
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
| 375 |
+
|
| 376 |
+
extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
ggml-cuda/fattn-wmma-f16.cuh
ADDED
|
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "common.cuh"
|
| 2 |
+
#include "fattn-common.cuh"
|
| 3 |
+
|
| 4 |
+
#if FP16_MMA_AVAILABLE
|
| 5 |
+
#include <mma.h>
|
| 6 |
+
#endif
|
| 7 |
+
|
| 8 |
+
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
| 9 |
+
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
| 10 |
+
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 11 |
+
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
| 12 |
+
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 13 |
+
static __global__ void flash_attn_ext_f16(
|
| 14 |
+
const char * __restrict__ Q,
|
| 15 |
+
const char * __restrict__ K,
|
| 16 |
+
const char * __restrict__ V,
|
| 17 |
+
const char * __restrict__ mask,
|
| 18 |
+
float * __restrict__ dst,
|
| 19 |
+
float2 * __restrict__ dst_meta,
|
| 20 |
+
const float scale,
|
| 21 |
+
const float max_bias,
|
| 22 |
+
const float m0,
|
| 23 |
+
const float m1,
|
| 24 |
+
const uint32_t n_head_log2,
|
| 25 |
+
const int ne00,
|
| 26 |
+
const int ne01,
|
| 27 |
+
const int ne02,
|
| 28 |
+
const int ne03,
|
| 29 |
+
const int ne10,
|
| 30 |
+
const int ne11,
|
| 31 |
+
const int ne12,
|
| 32 |
+
const int ne13,
|
| 33 |
+
const int ne31,
|
| 34 |
+
const int nb31,
|
| 35 |
+
const int nb01,
|
| 36 |
+
const int nb02,
|
| 37 |
+
const int nb03,
|
| 38 |
+
const int nb11,
|
| 39 |
+
const int nb12,
|
| 40 |
+
const int nb13,
|
| 41 |
+
const int nb21,
|
| 42 |
+
const int nb22,
|
| 43 |
+
const int nb23,
|
| 44 |
+
const int ne0,
|
| 45 |
+
const int ne1,
|
| 46 |
+
const int ne2,
|
| 47 |
+
const int ne3) {
|
| 48 |
+
#if FP16_MMA_AVAILABLE
|
| 49 |
+
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
| 50 |
+
|
| 51 |
+
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
| 52 |
+
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
| 53 |
+
|
| 54 |
+
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
| 55 |
+
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
| 56 |
+
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
| 57 |
+
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
| 58 |
+
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
| 59 |
+
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
| 60 |
+
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
| 61 |
+
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
| 62 |
+
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
| 63 |
+
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
| 64 |
+
|
| 65 |
+
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
| 66 |
+
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
| 67 |
+
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
| 68 |
+
|
| 69 |
+
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
| 70 |
+
constexpr int D_padded = D + 8;
|
| 71 |
+
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
| 72 |
+
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
| 73 |
+
|
| 74 |
+
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
| 75 |
+
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
| 76 |
+
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
| 77 |
+
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
| 78 |
+
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
| 79 |
+
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
| 80 |
+
|
| 81 |
+
const int stride_Q = nb01 / sizeof(float);
|
| 82 |
+
const int stride_KV = nb11 / sizeof(half);
|
| 83 |
+
|
| 84 |
+
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
| 85 |
+
const half slopeh = __float2half(slopef);
|
| 86 |
+
const half2 slope2 = make_half2(slopef, slopef);
|
| 87 |
+
|
| 88 |
+
frag_b Q_b[D/16][ncols/frag_n];
|
| 89 |
+
|
| 90 |
+
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
| 91 |
+
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
| 92 |
+
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
| 93 |
+
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
| 94 |
+
float * KQ_f = (float *) KQ;
|
| 95 |
+
half2 * KQ2 = (half2 *) KQ;
|
| 96 |
+
|
| 97 |
+
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
| 98 |
+
float KQ_max_f[ncols/nwarps];
|
| 99 |
+
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
| 100 |
+
|
| 101 |
+
#pragma unroll
|
| 102 |
+
for (int j = 0; j < ncols/nwarps; ++j) {
|
| 103 |
+
KQ_max_f[j] = -FLT_MAX/2.0f;
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
| 107 |
+
half2 KQ_max_h2[ncols/nwarps];
|
| 108 |
+
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
| 109 |
+
|
| 110 |
+
#pragma unroll
|
| 111 |
+
for (int j = 0; j < ncols/nwarps; ++j) {
|
| 112 |
+
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
| 116 |
+
half2 * VKQ2 = (half2 *) VKQ;
|
| 117 |
+
#pragma unroll
|
| 118 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 119 |
+
const int j = j0 + threadIdx.y;
|
| 120 |
+
#pragma unroll
|
| 121 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
| 122 |
+
const int i = i0 + threadIdx.x;
|
| 123 |
+
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
| 124 |
+
break;
|
| 125 |
+
}
|
| 126 |
+
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
| 127 |
+
}
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
// Convert Q to half and apply scale, temporarily store in KQ:
|
| 131 |
+
#pragma unroll
|
| 132 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 133 |
+
const int j = j0 + threadIdx.y;
|
| 134 |
+
#pragma unroll
|
| 135 |
+
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
| 136 |
+
const int i = i0 + threadIdx.x;
|
| 137 |
+
if (i0 + WARP_SIZE > D && i >= D) {
|
| 138 |
+
break;
|
| 139 |
+
}
|
| 140 |
+
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
| 141 |
+
}
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
__syncthreads();
|
| 145 |
+
|
| 146 |
+
// Load Q into tensor core fragments/registers since it will be used frequently:
|
| 147 |
+
#pragma unroll
|
| 148 |
+
for (int i0 = 0; i0 < D; i0 += 16) {
|
| 149 |
+
#pragma unroll
|
| 150 |
+
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 151 |
+
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
__syncthreads();
|
| 156 |
+
|
| 157 |
+
// Iterate over ne11 == previous tokens:
|
| 158 |
+
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
| 159 |
+
// Calculate tile of KQ:
|
| 160 |
+
#pragma unroll
|
| 161 |
+
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
| 162 |
+
frag_c_KQ KQ_c[ncols/frag_n];
|
| 163 |
+
#pragma unroll
|
| 164 |
+
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 165 |
+
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
| 166 |
+
}
|
| 167 |
+
#pragma unroll
|
| 168 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
| 169 |
+
frag_a_K K_a;
|
| 170 |
+
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
| 171 |
+
#pragma unroll
|
| 172 |
+
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 173 |
+
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
| 174 |
+
}
|
| 175 |
+
}
|
| 176 |
+
#pragma unroll
|
| 177 |
+
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 178 |
+
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
| 179 |
+
}
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
__syncthreads();
|
| 183 |
+
|
| 184 |
+
// Calculate softmax for each KQ column using the current max. value.
|
| 185 |
+
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
| 186 |
+
#pragma unroll
|
| 187 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 188 |
+
const int j = j0 + threadIdx.y;
|
| 189 |
+
|
| 190 |
+
if (std::is_same<KQ_acc_t, float>::value) {
|
| 191 |
+
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
| 192 |
+
#pragma unroll
|
| 193 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
| 194 |
+
const int k = k0 + threadIdx.x;
|
| 195 |
+
|
| 196 |
+
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
float KQ_max_new = KQ_max_f[j0/nwarps];
|
| 200 |
+
#pragma unroll
|
| 201 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
| 202 |
+
const int k = k0 + threadIdx.x;
|
| 203 |
+
|
| 204 |
+
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
| 205 |
+
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
| 206 |
+
}
|
| 207 |
+
KQ_max_new = warp_reduce_max(KQ_max_new);
|
| 208 |
+
|
| 209 |
+
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
| 210 |
+
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
| 211 |
+
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
| 212 |
+
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
| 213 |
+
}
|
| 214 |
+
KQ_max_f[j0/nwarps] = KQ_max_new;
|
| 215 |
+
|
| 216 |
+
float KQ_rowsum_add = 0.0f;
|
| 217 |
+
#pragma unroll
|
| 218 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
| 219 |
+
const int k = k0 + threadIdx.x;
|
| 220 |
+
|
| 221 |
+
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
| 222 |
+
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
| 223 |
+
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
| 224 |
+
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
| 225 |
+
}
|
| 226 |
+
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
| 227 |
+
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
| 228 |
+
}
|
| 229 |
+
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
| 230 |
+
|
| 231 |
+
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
| 232 |
+
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
| 233 |
+
} else {
|
| 234 |
+
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
| 235 |
+
#pragma unroll
|
| 236 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
| 237 |
+
const int k = k0 + threadIdx.x;
|
| 238 |
+
|
| 239 |
+
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
| 243 |
+
#pragma unroll
|
| 244 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
| 245 |
+
const int k = k0 + threadIdx.x;
|
| 246 |
+
|
| 247 |
+
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
| 248 |
+
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
| 249 |
+
}
|
| 250 |
+
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
| 251 |
+
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
| 252 |
+
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
| 253 |
+
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
| 254 |
+
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
| 255 |
+
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
| 256 |
+
|
| 257 |
+
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
| 258 |
+
#pragma unroll
|
| 259 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
| 260 |
+
const int k = k0 + threadIdx.x;
|
| 261 |
+
|
| 262 |
+
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
| 263 |
+
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
| 264 |
+
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
| 265 |
+
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
| 266 |
+
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
| 267 |
+
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
| 268 |
+
}
|
| 269 |
+
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
| 270 |
+
|
| 271 |
+
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
| 272 |
+
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
| 273 |
+
}
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
__syncthreads();
|
| 277 |
+
|
| 278 |
+
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
| 279 |
+
#pragma unroll
|
| 280 |
+
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 281 |
+
#pragma unroll
|
| 282 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
| 283 |
+
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
| 284 |
+
nvcuda::wmma::load_matrix_sync(
|
| 285 |
+
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
| 286 |
+
KQ + j0*(kqar*kqs_padded) + k,
|
| 287 |
+
kqar*kqs_padded);
|
| 288 |
+
}
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
| 292 |
+
#pragma unroll
|
| 293 |
+
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
| 294 |
+
#pragma unroll
|
| 295 |
+
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 296 |
+
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
#pragma unroll
|
| 300 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
| 301 |
+
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
| 302 |
+
|
| 303 |
+
frag_a_V v_a;
|
| 304 |
+
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
| 305 |
+
#pragma unroll
|
| 306 |
+
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 307 |
+
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
| 308 |
+
}
|
| 309 |
+
}
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
__syncthreads();
|
| 313 |
+
|
| 314 |
+
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
| 315 |
+
#pragma unroll
|
| 316 |
+
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
| 317 |
+
#pragma unroll
|
| 318 |
+
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 319 |
+
nvcuda::wmma::store_matrix_sync(
|
| 320 |
+
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
| 321 |
+
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
| 322 |
+
D_padded, nvcuda::wmma::mem_col_major);
|
| 323 |
+
}
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
__syncthreads();
|
| 327 |
+
|
| 328 |
+
#pragma unroll
|
| 329 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 330 |
+
const int j = j0 + threadIdx.y;
|
| 331 |
+
|
| 332 |
+
half2 VKQ_scale;
|
| 333 |
+
if (std::is_same<KQ_acc_t, float>::value) {
|
| 334 |
+
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
| 335 |
+
} else {
|
| 336 |
+
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
#pragma unroll
|
| 340 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
| 341 |
+
const int i = i0 + threadIdx.x;
|
| 342 |
+
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
| 343 |
+
break;
|
| 344 |
+
}
|
| 345 |
+
|
| 346 |
+
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
| 347 |
+
#pragma unroll
|
| 348 |
+
for (int l = 0; l < VKQ_ratio; ++l) {
|
| 349 |
+
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
| 350 |
+
}
|
| 351 |
+
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
| 352 |
+
}
|
| 353 |
+
}
|
| 354 |
+
|
| 355 |
+
__syncthreads();
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
#pragma unroll
|
| 359 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 360 |
+
const int j_VKQ = j0 + threadIdx.y;
|
| 361 |
+
if (ic0 + j_VKQ >= ne01) {
|
| 362 |
+
return;
|
| 363 |
+
}
|
| 364 |
+
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
| 365 |
+
|
| 366 |
+
float KQ_rowsum_j;
|
| 367 |
+
if (std::is_same<KQ_acc_t, float>::value) {
|
| 368 |
+
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
| 369 |
+
} else {
|
| 370 |
+
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
#pragma unroll
|
| 374 |
+
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
| 375 |
+
const int i = i0 + threadIdx.x;
|
| 376 |
+
if (i0 + WARP_SIZE > D && i >= D) {
|
| 377 |
+
break;
|
| 378 |
+
}
|
| 379 |
+
float dst_val = VKQ[j_VKQ*D_padded + i];
|
| 380 |
+
if (parallel_blocks == 1) {
|
| 381 |
+
dst_val /= KQ_rowsum_j;
|
| 382 |
+
}
|
| 383 |
+
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
| 384 |
+
}
|
| 385 |
+
|
| 386 |
+
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
| 387 |
+
continue;
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
float2 dst_meta_val;
|
| 391 |
+
if (std::is_same<KQ_acc_t, float>::value) {
|
| 392 |
+
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
| 393 |
+
} else {
|
| 394 |
+
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
| 395 |
+
}
|
| 396 |
+
dst_meta_val.y = KQ_rowsum_j;
|
| 397 |
+
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
| 398 |
+
}
|
| 399 |
+
#else
|
| 400 |
+
NO_DEVICE_CODE;
|
| 401 |
+
#endif // FP16_MMA_AVAILABLE
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
constexpr int get_max_power_of_2(int x) {
|
| 405 |
+
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
| 409 |
+
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
| 410 |
+
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
| 411 |
+
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
| 412 |
+
|
| 413 |
+
// Number of VKQ rows calculated in parallel:
|
| 414 |
+
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
| 415 |
+
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
| 416 |
+
}
|
| 417 |
+
|
| 418 |
+
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
| 419 |
+
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
| 420 |
+
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
| 421 |
+
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
| 422 |
+
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
| 423 |
+
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
| 424 |
+
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
| 425 |
+
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
| 426 |
+
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
| 427 |
+
|
| 428 |
+
template <int D, int cols_per_block, typename KQ_acc_t>
|
| 429 |
+
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 430 |
+
const ggml_tensor * Q = dst->src[0];
|
| 431 |
+
|
| 432 |
+
constexpr int nwarps = 4;
|
| 433 |
+
|
| 434 |
+
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
| 435 |
+
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
| 436 |
+
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
| 437 |
+
|
| 438 |
+
if (4*blocks_num_pb1 < 2*nsm) {
|
| 439 |
+
constexpr int parallel_blocks = 4;
|
| 440 |
+
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
| 441 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 442 |
+
return;
|
| 443 |
+
}
|
| 444 |
+
if (2*blocks_num_pb1 < 2*nsm) {
|
| 445 |
+
constexpr int parallel_blocks = 2;
|
| 446 |
+
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
| 447 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 448 |
+
return;
|
| 449 |
+
}
|
| 450 |
+
constexpr int parallel_blocks = 1;
|
| 451 |
+
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
| 452 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
|
| 456 |
+
template void ggml_cuda_flash_attn_ext_wmma_f16_case \
|
| 457 |
+
<D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
| 458 |
+
|
| 459 |
+
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
|
| 460 |
+
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
|
| 461 |
+
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
|
| 462 |
+
extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
| 463 |
+
extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
| 464 |
+
extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
| 465 |
+
|
| 466 |
+
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
|
| 467 |
+
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
|
| 468 |
+
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
|
| 469 |
+
extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
| 470 |
+
extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
| 471 |
+
// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
| 472 |
+
|
| 473 |
+
extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
|
| 474 |
+
extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
|
| 475 |
+
extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
| 476 |
+
extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
| 477 |
+
|
| 478 |
+
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
|
| 479 |
+
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
|
| 480 |
+
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
|
| 481 |
+
extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
| 482 |
+
extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
| 483 |
+
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
| 484 |
+
|
| 485 |
+
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
|
| 486 |
+
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
|
| 487 |
+
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
|
| 488 |
+
extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
| 489 |
+
extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
| 490 |
+
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
ggml-cuda/fattn.cu
CHANGED
|
@@ -4,519 +4,38 @@
|
|
| 4 |
#include "fattn-tile-f32.cuh"
|
| 5 |
#include "fattn-vec-f16.cuh"
|
| 6 |
#include "fattn-vec-f32.cuh"
|
|
|
|
| 7 |
#include "fattn.cuh"
|
| 8 |
|
| 9 |
#include <cstdint>
|
| 10 |
|
| 11 |
-
|
| 12 |
-
#include <mma.h>
|
| 13 |
-
#endif
|
| 14 |
-
|
| 15 |
-
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
| 16 |
-
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
| 17 |
-
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 18 |
-
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
| 19 |
-
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 20 |
-
static __global__ void flash_attn_ext_f16(
|
| 21 |
-
const char * __restrict__ Q,
|
| 22 |
-
const char * __restrict__ K,
|
| 23 |
-
const char * __restrict__ V,
|
| 24 |
-
const char * __restrict__ mask,
|
| 25 |
-
float * __restrict__ dst,
|
| 26 |
-
float2 * __restrict__ dst_meta,
|
| 27 |
-
const float scale,
|
| 28 |
-
const float max_bias,
|
| 29 |
-
const float m0,
|
| 30 |
-
const float m1,
|
| 31 |
-
const uint32_t n_head_log2,
|
| 32 |
-
const int ne00,
|
| 33 |
-
const int ne01,
|
| 34 |
-
const int ne02,
|
| 35 |
-
const int ne03,
|
| 36 |
-
const int ne10,
|
| 37 |
-
const int ne11,
|
| 38 |
-
const int ne12,
|
| 39 |
-
const int ne13,
|
| 40 |
-
const int ne31,
|
| 41 |
-
const int nb31,
|
| 42 |
-
const int nb01,
|
| 43 |
-
const int nb02,
|
| 44 |
-
const int nb03,
|
| 45 |
-
const int nb11,
|
| 46 |
-
const int nb12,
|
| 47 |
-
const int nb13,
|
| 48 |
-
const int ne0,
|
| 49 |
-
const int ne1,
|
| 50 |
-
const int ne2,
|
| 51 |
-
const int ne3) {
|
| 52 |
-
#if FP16_MMA_AVAILABLE
|
| 53 |
-
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
| 54 |
-
|
| 55 |
-
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
| 56 |
-
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
| 57 |
-
|
| 58 |
-
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
| 59 |
-
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
| 60 |
-
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
| 61 |
-
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
| 62 |
-
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
| 63 |
-
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
| 64 |
-
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
| 65 |
-
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
| 66 |
-
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
| 67 |
-
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
| 68 |
-
|
| 69 |
-
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
| 70 |
-
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
| 71 |
-
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
| 72 |
-
|
| 73 |
-
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
| 74 |
-
constexpr int D_padded = D + 8;
|
| 75 |
-
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
| 76 |
-
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
| 77 |
-
|
| 78 |
-
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
| 79 |
-
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
| 80 |
-
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
| 81 |
-
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
| 82 |
-
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
| 83 |
-
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
| 84 |
-
|
| 85 |
-
const int stride_Q = nb01 / sizeof(float);
|
| 86 |
-
const int stride_KV = nb11 / sizeof(half);
|
| 87 |
-
|
| 88 |
-
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
| 89 |
-
const half slopeh = __float2half(slopef);
|
| 90 |
-
const half2 slope2 = make_half2(slopef, slopef);
|
| 91 |
-
|
| 92 |
-
frag_b Q_b[D/16][ncols/frag_n];
|
| 93 |
-
|
| 94 |
-
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
| 95 |
-
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
| 96 |
-
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
| 97 |
-
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
| 98 |
-
float * KQ_f = (float *) KQ;
|
| 99 |
-
half2 * KQ2 = (half2 *) KQ;
|
| 100 |
-
|
| 101 |
-
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
| 102 |
-
float KQ_max_f[ncols/nwarps];
|
| 103 |
-
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
| 104 |
-
|
| 105 |
-
#pragma unroll
|
| 106 |
-
for (int j = 0; j < ncols/nwarps; ++j) {
|
| 107 |
-
KQ_max_f[j] = -FLT_MAX/2.0f;
|
| 108 |
-
}
|
| 109 |
-
|
| 110 |
-
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
| 111 |
-
half2 KQ_max_h2[ncols/nwarps];
|
| 112 |
-
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
| 113 |
-
|
| 114 |
-
#pragma unroll
|
| 115 |
-
for (int j = 0; j < ncols/nwarps; ++j) {
|
| 116 |
-
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
| 120 |
-
half2 * VKQ2 = (half2 *) VKQ;
|
| 121 |
-
#pragma unroll
|
| 122 |
-
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 123 |
-
const int j = j0 + threadIdx.y;
|
| 124 |
-
#pragma unroll
|
| 125 |
-
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
| 126 |
-
const int i = i0 + threadIdx.x;
|
| 127 |
-
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
| 128 |
-
break;
|
| 129 |
-
}
|
| 130 |
-
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
| 131 |
-
}
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
// Convert Q to half and apply scale, temporarily store in KQ:
|
| 135 |
-
#pragma unroll
|
| 136 |
-
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 137 |
-
const int j = j0 + threadIdx.y;
|
| 138 |
-
#pragma unroll
|
| 139 |
-
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
| 140 |
-
const int i = i0 + threadIdx.x;
|
| 141 |
-
if (i0 + WARP_SIZE > D && i >= D) {
|
| 142 |
-
break;
|
| 143 |
-
}
|
| 144 |
-
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
| 145 |
-
}
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
__syncthreads();
|
| 149 |
-
|
| 150 |
-
// Load Q into tensor core fragments/registers since it will be used frequently:
|
| 151 |
-
#pragma unroll
|
| 152 |
-
for (int i0 = 0; i0 < D; i0 += 16) {
|
| 153 |
-
#pragma unroll
|
| 154 |
-
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 155 |
-
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
| 156 |
-
}
|
| 157 |
-
}
|
| 158 |
-
|
| 159 |
-
__syncthreads();
|
| 160 |
-
|
| 161 |
-
// Iterate over ne11 == previous tokens:
|
| 162 |
-
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
| 163 |
-
// Calculate tile of KQ:
|
| 164 |
-
#pragma unroll
|
| 165 |
-
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
| 166 |
-
frag_c_KQ KQ_c[ncols/frag_n];
|
| 167 |
-
#pragma unroll
|
| 168 |
-
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 169 |
-
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
| 170 |
-
}
|
| 171 |
-
#pragma unroll
|
| 172 |
-
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
| 173 |
-
frag_a_K K_a;
|
| 174 |
-
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
| 175 |
-
#pragma unroll
|
| 176 |
-
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 177 |
-
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
| 178 |
-
}
|
| 179 |
-
}
|
| 180 |
-
#pragma unroll
|
| 181 |
-
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 182 |
-
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
| 183 |
-
}
|
| 184 |
-
}
|
| 185 |
-
|
| 186 |
-
__syncthreads();
|
| 187 |
-
|
| 188 |
-
// Calculate softmax for each KQ column using the current max. value.
|
| 189 |
-
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
| 190 |
-
#pragma unroll
|
| 191 |
-
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 192 |
-
const int j = j0 + threadIdx.y;
|
| 193 |
-
|
| 194 |
-
if (std::is_same<KQ_acc_t, float>::value) {
|
| 195 |
-
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
| 196 |
-
#pragma unroll
|
| 197 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
| 198 |
-
const int k = k0 + threadIdx.x;
|
| 199 |
-
|
| 200 |
-
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
| 201 |
-
}
|
| 202 |
-
|
| 203 |
-
float KQ_max_new = KQ_max_f[j0/nwarps];
|
| 204 |
-
#pragma unroll
|
| 205 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
| 206 |
-
const int k = k0 + threadIdx.x;
|
| 207 |
-
|
| 208 |
-
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
| 209 |
-
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
| 210 |
-
}
|
| 211 |
-
KQ_max_new = warp_reduce_max(KQ_max_new);
|
| 212 |
-
|
| 213 |
-
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
| 214 |
-
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
| 215 |
-
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
| 216 |
-
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
| 217 |
-
}
|
| 218 |
-
KQ_max_f[j0/nwarps] = KQ_max_new;
|
| 219 |
-
|
| 220 |
-
float KQ_rowsum_add = 0.0f;
|
| 221 |
-
#pragma unroll
|
| 222 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
| 223 |
-
const int k = k0 + threadIdx.x;
|
| 224 |
-
|
| 225 |
-
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
| 226 |
-
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
| 227 |
-
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
| 228 |
-
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
| 229 |
-
}
|
| 230 |
-
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
| 231 |
-
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
| 232 |
-
}
|
| 233 |
-
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
| 234 |
-
|
| 235 |
-
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
| 236 |
-
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
| 237 |
-
} else {
|
| 238 |
-
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
| 239 |
-
#pragma unroll
|
| 240 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
| 241 |
-
const int k = k0 + threadIdx.x;
|
| 242 |
-
|
| 243 |
-
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
| 244 |
-
}
|
| 245 |
-
|
| 246 |
-
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
| 247 |
-
#pragma unroll
|
| 248 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
| 249 |
-
const int k = k0 + threadIdx.x;
|
| 250 |
-
|
| 251 |
-
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
| 252 |
-
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
| 253 |
-
}
|
| 254 |
-
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
| 255 |
-
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
| 256 |
-
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
| 257 |
-
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
| 258 |
-
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
| 259 |
-
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
| 260 |
-
|
| 261 |
-
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
| 262 |
-
#pragma unroll
|
| 263 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
| 264 |
-
const int k = k0 + threadIdx.x;
|
| 265 |
-
|
| 266 |
-
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
| 267 |
-
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
| 268 |
-
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
| 269 |
-
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
| 270 |
-
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
| 271 |
-
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
| 272 |
-
}
|
| 273 |
-
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
| 274 |
-
|
| 275 |
-
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
| 276 |
-
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
| 277 |
-
}
|
| 278 |
-
}
|
| 279 |
-
|
| 280 |
-
__syncthreads();
|
| 281 |
-
|
| 282 |
-
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
| 283 |
-
#pragma unroll
|
| 284 |
-
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 285 |
-
#pragma unroll
|
| 286 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
| 287 |
-
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
| 288 |
-
nvcuda::wmma::load_matrix_sync(
|
| 289 |
-
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
| 290 |
-
KQ + j0*(kqar*kqs_padded) + k,
|
| 291 |
-
kqar*kqs_padded);
|
| 292 |
-
}
|
| 293 |
-
}
|
| 294 |
-
|
| 295 |
-
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
| 296 |
-
#pragma unroll
|
| 297 |
-
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
| 298 |
-
#pragma unroll
|
| 299 |
-
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 300 |
-
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
-
#pragma unroll
|
| 304 |
-
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
| 305 |
-
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
| 306 |
-
|
| 307 |
-
frag_a_V v_a;
|
| 308 |
-
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
| 309 |
-
#pragma unroll
|
| 310 |
-
for (int j = 0; j < ncols/frag_n; ++j) {
|
| 311 |
-
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
| 312 |
-
}
|
| 313 |
-
}
|
| 314 |
-
}
|
| 315 |
-
|
| 316 |
-
__syncthreads();
|
| 317 |
-
|
| 318 |
-
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
| 319 |
-
#pragma unroll
|
| 320 |
-
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
| 321 |
-
#pragma unroll
|
| 322 |
-
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
| 323 |
-
nvcuda::wmma::store_matrix_sync(
|
| 324 |
-
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
| 325 |
-
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
| 326 |
-
D_padded, nvcuda::wmma::mem_col_major);
|
| 327 |
-
}
|
| 328 |
-
}
|
| 329 |
-
|
| 330 |
-
__syncthreads();
|
| 331 |
-
|
| 332 |
-
#pragma unroll
|
| 333 |
-
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 334 |
-
const int j = j0 + threadIdx.y;
|
| 335 |
-
|
| 336 |
-
half2 VKQ_scale;
|
| 337 |
-
if (std::is_same<KQ_acc_t, float>::value) {
|
| 338 |
-
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
| 339 |
-
} else {
|
| 340 |
-
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
| 341 |
-
}
|
| 342 |
-
|
| 343 |
-
#pragma unroll
|
| 344 |
-
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
| 345 |
-
const int i = i0 + threadIdx.x;
|
| 346 |
-
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
| 347 |
-
break;
|
| 348 |
-
}
|
| 349 |
-
|
| 350 |
-
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
| 351 |
-
#pragma unroll
|
| 352 |
-
for (int l = 0; l < VKQ_ratio; ++l) {
|
| 353 |
-
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
| 354 |
-
}
|
| 355 |
-
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
| 356 |
-
}
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
__syncthreads();
|
| 360 |
-
}
|
| 361 |
-
|
| 362 |
-
#pragma unroll
|
| 363 |
-
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
| 364 |
-
const int j_VKQ = j0 + threadIdx.y;
|
| 365 |
-
if (ic0 + j_VKQ >= ne01) {
|
| 366 |
-
return;
|
| 367 |
-
}
|
| 368 |
-
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
| 369 |
-
|
| 370 |
-
float KQ_rowsum_j;
|
| 371 |
-
if (std::is_same<KQ_acc_t, float>::value) {
|
| 372 |
-
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
| 373 |
-
} else {
|
| 374 |
-
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
| 375 |
-
}
|
| 376 |
-
|
| 377 |
-
#pragma unroll
|
| 378 |
-
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
| 379 |
-
const int i = i0 + threadIdx.x;
|
| 380 |
-
if (i0 + WARP_SIZE > D && i >= D) {
|
| 381 |
-
break;
|
| 382 |
-
}
|
| 383 |
-
float dst_val = VKQ[j_VKQ*D_padded + i];
|
| 384 |
-
if (parallel_blocks == 1) {
|
| 385 |
-
dst_val /= KQ_rowsum_j;
|
| 386 |
-
}
|
| 387 |
-
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
| 388 |
-
}
|
| 389 |
-
|
| 390 |
-
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
| 391 |
-
continue;
|
| 392 |
-
}
|
| 393 |
-
|
| 394 |
-
float2 dst_meta_val;
|
| 395 |
-
if (std::is_same<KQ_acc_t, float>::value) {
|
| 396 |
-
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
| 397 |
-
} else {
|
| 398 |
-
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
| 399 |
-
}
|
| 400 |
-
dst_meta_val.y = KQ_rowsum_j;
|
| 401 |
-
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
| 402 |
-
}
|
| 403 |
-
#else
|
| 404 |
-
NO_DEVICE_CODE;
|
| 405 |
-
#endif // FP16_MMA_AVAILABLE
|
| 406 |
-
}
|
| 407 |
-
|
| 408 |
-
constexpr int get_max_power_of_2(int x) {
|
| 409 |
-
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
| 410 |
-
}
|
| 411 |
-
|
| 412 |
-
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
| 413 |
-
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
| 414 |
-
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
| 415 |
-
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
| 416 |
-
|
| 417 |
-
// Number of VKQ rows calculated in parallel:
|
| 418 |
-
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
| 419 |
-
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
| 420 |
-
}
|
| 421 |
-
|
| 422 |
-
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
| 423 |
-
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
| 424 |
-
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
| 425 |
-
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
| 426 |
-
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
| 427 |
-
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
| 428 |
-
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
| 429 |
-
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
| 430 |
-
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
| 431 |
-
|
| 432 |
-
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
|
| 433 |
-
void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 434 |
-
const ggml_tensor * Q = dst->src[0];
|
| 435 |
-
|
| 436 |
-
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
| 437 |
-
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
| 438 |
-
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
| 439 |
-
|
| 440 |
-
if (4*blocks_num_pb1 < 2*nsm) {
|
| 441 |
-
constexpr int parallel_blocks = 4;
|
| 442 |
-
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
| 443 |
-
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 444 |
-
return;
|
| 445 |
-
}
|
| 446 |
-
if (2*blocks_num_pb1 < 2*nsm) {
|
| 447 |
-
constexpr int parallel_blocks = 2;
|
| 448 |
-
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
| 449 |
-
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 450 |
-
return;
|
| 451 |
-
}
|
| 452 |
-
constexpr int parallel_blocks = 1;
|
| 453 |
-
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
| 454 |
-
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
| 455 |
-
}
|
| 456 |
-
|
| 457 |
-
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 458 |
const ggml_tensor * KQV = dst;
|
| 459 |
const ggml_tensor * Q = dst->src[0];
|
| 460 |
|
| 461 |
-
ggml_cuda_set_device(ctx.device);
|
| 462 |
-
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
| 463 |
const int32_t precision = KQV->op_params[2];
|
| 464 |
|
| 465 |
-
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
| 466 |
-
if (cc >= CC_OFFSET_AMD) {
|
| 467 |
-
if (precision == GGML_PREC_DEFAULT) {
|
| 468 |
-
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
| 469 |
-
} else {
|
| 470 |
-
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
| 471 |
-
}
|
| 472 |
-
return;
|
| 473 |
-
}
|
| 474 |
-
|
| 475 |
-
if (!fast_fp16_available(cc)) {
|
| 476 |
-
if (Q->ne[1] <= 8) {
|
| 477 |
-
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
| 478 |
-
} else {
|
| 479 |
-
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
| 480 |
-
}
|
| 481 |
-
return;
|
| 482 |
-
}
|
| 483 |
-
|
| 484 |
-
if (!fp16_mma_available(cc)) {
|
| 485 |
-
if (Q->ne[1] <= 8) {
|
| 486 |
-
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
| 487 |
-
} else {
|
| 488 |
-
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
| 489 |
-
}
|
| 490 |
-
return;
|
| 491 |
-
}
|
| 492 |
-
|
| 493 |
if (precision != GGML_PREC_DEFAULT) {
|
| 494 |
-
if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
|
| 495 |
-
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
| 496 |
-
return;
|
| 497 |
-
}
|
| 498 |
-
|
| 499 |
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
| 500 |
constexpr int cols_per_block = 16;
|
| 501 |
-
constexpr int nwarps = 4;
|
| 502 |
switch (Q->ne[0]) {
|
| 503 |
case 64:
|
| 504 |
-
|
| 505 |
break;
|
| 506 |
case 80:
|
| 507 |
-
|
| 508 |
break;
|
| 509 |
case 96:
|
| 510 |
-
|
| 511 |
break;
|
| 512 |
case 112:
|
| 513 |
-
|
| 514 |
break;
|
| 515 |
case 128:
|
| 516 |
-
|
| 517 |
break;
|
| 518 |
case 256:
|
| 519 |
-
|
| 520 |
break;
|
| 521 |
default:
|
| 522 |
GGML_ASSERT(false);
|
|
@@ -524,25 +43,24 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|
| 524 |
}
|
| 525 |
} else {
|
| 526 |
constexpr int cols_per_block = 32;
|
| 527 |
-
constexpr int nwarps = 4;
|
| 528 |
switch (Q->ne[0]) {
|
| 529 |
case 64:
|
| 530 |
-
|
| 531 |
break;
|
| 532 |
case 80:
|
| 533 |
-
|
| 534 |
break;
|
| 535 |
case 96:
|
| 536 |
-
|
| 537 |
break;
|
| 538 |
case 112:
|
| 539 |
-
|
| 540 |
break;
|
| 541 |
case 128:
|
| 542 |
-
|
| 543 |
break;
|
| 544 |
// case 256:
|
| 545 |
-
//
|
| 546 |
// break;
|
| 547 |
default:
|
| 548 |
GGML_ASSERT(false);
|
|
@@ -552,26 +70,20 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|
| 552 |
return;
|
| 553 |
}
|
| 554 |
|
| 555 |
-
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
| 556 |
-
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
| 557 |
-
return;
|
| 558 |
-
}
|
| 559 |
-
|
| 560 |
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
| 561 |
constexpr int cols_per_block = 8;
|
| 562 |
-
constexpr int nwarps = 4;
|
| 563 |
switch (Q->ne[0]) {
|
| 564 |
case 64:
|
| 565 |
-
|
| 566 |
break;
|
| 567 |
case 96:
|
| 568 |
-
|
| 569 |
break;
|
| 570 |
case 128:
|
| 571 |
-
|
| 572 |
break;
|
| 573 |
case 256:
|
| 574 |
-
|
| 575 |
break;
|
| 576 |
default:
|
| 577 |
GGML_ASSERT(false);
|
|
@@ -582,25 +94,24 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|
| 582 |
|
| 583 |
if (Q->ne[1] <= 32) {
|
| 584 |
constexpr int cols_per_block = 16;
|
| 585 |
-
constexpr int nwarps = 4;
|
| 586 |
switch (Q->ne[0]) {
|
| 587 |
case 64:
|
| 588 |
-
|
| 589 |
break;
|
| 590 |
case 80:
|
| 591 |
-
|
| 592 |
break;
|
| 593 |
case 96:
|
| 594 |
-
|
| 595 |
break;
|
| 596 |
case 112:
|
| 597 |
-
|
| 598 |
break;
|
| 599 |
case 128:
|
| 600 |
-
|
| 601 |
break;
|
| 602 |
case 256:
|
| 603 |
-
|
| 604 |
break;
|
| 605 |
default:
|
| 606 |
GGML_ASSERT(false);
|
|
@@ -610,29 +121,229 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|
| 610 |
}
|
| 611 |
|
| 612 |
constexpr int cols_per_block = 32;
|
| 613 |
-
constexpr int nwarps = 4;
|
| 614 |
switch (Q->ne[0]) {
|
| 615 |
case 64:
|
| 616 |
-
|
| 617 |
break;
|
| 618 |
case 80:
|
| 619 |
-
|
| 620 |
break;
|
| 621 |
case 96:
|
| 622 |
-
|
| 623 |
break;
|
| 624 |
case 112:
|
| 625 |
-
|
| 626 |
break;
|
| 627 |
case 128:
|
| 628 |
-
|
| 629 |
break;
|
| 630 |
case 256:
|
| 631 |
-
|
| 632 |
break;
|
| 633 |
default:
|
| 634 |
GGML_ASSERT(false);
|
| 635 |
break;
|
| 636 |
}
|
| 637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
}
|
|
|
|
| 4 |
#include "fattn-tile-f32.cuh"
|
| 5 |
#include "fattn-vec-f16.cuh"
|
| 6 |
#include "fattn-vec-f32.cuh"
|
| 7 |
+
#include "fattn-wmma-f16.cuh"
|
| 8 |
#include "fattn.cuh"
|
| 9 |
|
| 10 |
#include <cstdint>
|
| 11 |
|
| 12 |
+
static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
const ggml_tensor * KQV = dst;
|
| 14 |
const ggml_tensor * Q = dst->src[0];
|
| 15 |
|
|
|
|
|
|
|
| 16 |
const int32_t precision = KQV->op_params[2];
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if (precision != GGML_PREC_DEFAULT) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
| 20 |
constexpr int cols_per_block = 16;
|
|
|
|
| 21 |
switch (Q->ne[0]) {
|
| 22 |
case 64:
|
| 23 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
| 24 |
break;
|
| 25 |
case 80:
|
| 26 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
| 27 |
break;
|
| 28 |
case 96:
|
| 29 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
| 30 |
break;
|
| 31 |
case 112:
|
| 32 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
| 33 |
break;
|
| 34 |
case 128:
|
| 35 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
| 36 |
break;
|
| 37 |
case 256:
|
| 38 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
| 39 |
break;
|
| 40 |
default:
|
| 41 |
GGML_ASSERT(false);
|
|
|
|
| 43 |
}
|
| 44 |
} else {
|
| 45 |
constexpr int cols_per_block = 32;
|
|
|
|
| 46 |
switch (Q->ne[0]) {
|
| 47 |
case 64:
|
| 48 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
| 49 |
break;
|
| 50 |
case 80:
|
| 51 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
| 52 |
break;
|
| 53 |
case 96:
|
| 54 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
| 55 |
break;
|
| 56 |
case 112:
|
| 57 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
| 58 |
break;
|
| 59 |
case 128:
|
| 60 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
| 61 |
break;
|
| 62 |
// case 256:
|
| 63 |
+
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
| 64 |
// break;
|
| 65 |
default:
|
| 66 |
GGML_ASSERT(false);
|
|
|
|
| 70 |
return;
|
| 71 |
}
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
| 74 |
constexpr int cols_per_block = 8;
|
|
|
|
| 75 |
switch (Q->ne[0]) {
|
| 76 |
case 64:
|
| 77 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
| 78 |
break;
|
| 79 |
case 96:
|
| 80 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
| 81 |
break;
|
| 82 |
case 128:
|
| 83 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
| 84 |
break;
|
| 85 |
case 256:
|
| 86 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
| 87 |
break;
|
| 88 |
default:
|
| 89 |
GGML_ASSERT(false);
|
|
|
|
| 94 |
|
| 95 |
if (Q->ne[1] <= 32) {
|
| 96 |
constexpr int cols_per_block = 16;
|
|
|
|
| 97 |
switch (Q->ne[0]) {
|
| 98 |
case 64:
|
| 99 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
| 100 |
break;
|
| 101 |
case 80:
|
| 102 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
| 103 |
break;
|
| 104 |
case 96:
|
| 105 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
| 106 |
break;
|
| 107 |
case 112:
|
| 108 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
| 109 |
break;
|
| 110 |
case 128:
|
| 111 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
| 112 |
break;
|
| 113 |
case 256:
|
| 114 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
| 115 |
break;
|
| 116 |
default:
|
| 117 |
GGML_ASSERT(false);
|
|
|
|
| 121 |
}
|
| 122 |
|
| 123 |
constexpr int cols_per_block = 32;
|
|
|
|
| 124 |
switch (Q->ne[0]) {
|
| 125 |
case 64:
|
| 126 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
| 127 |
break;
|
| 128 |
case 80:
|
| 129 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
| 130 |
break;
|
| 131 |
case 96:
|
| 132 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
| 133 |
break;
|
| 134 |
case 112:
|
| 135 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
| 136 |
break;
|
| 137 |
case 128:
|
| 138 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
| 139 |
break;
|
| 140 |
case 256:
|
| 141 |
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
| 142 |
break;
|
| 143 |
default:
|
| 144 |
GGML_ASSERT(false);
|
| 145 |
break;
|
| 146 |
}
|
| 147 |
+
}
|
| 148 |
+
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
| 149 |
+
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
| 150 |
+
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
| 151 |
+
return; \
|
| 152 |
+
} \
|
| 153 |
+
|
| 154 |
+
static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 155 |
+
ggml_tensor * Q = dst->src[1];
|
| 156 |
+
ggml_tensor * K = dst->src[1];
|
| 157 |
+
ggml_tensor * V = dst->src[2];
|
| 158 |
+
|
| 159 |
+
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
| 160 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
| 161 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
| 162 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
| 163 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
| 164 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
| 165 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
|
| 166 |
+
|
| 167 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
| 168 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
| 169 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
| 170 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
| 171 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
| 172 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
| 173 |
+
|
| 174 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
| 175 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
| 176 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
| 177 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
| 178 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
| 179 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
| 180 |
+
|
| 181 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
| 182 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
| 183 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
| 184 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
| 185 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
| 186 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
| 187 |
+
|
| 188 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
| 189 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
| 190 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
| 191 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
| 192 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
| 193 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
| 194 |
+
|
| 195 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
| 196 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
| 197 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
| 198 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
| 199 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
| 200 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
| 201 |
+
|
| 202 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
| 203 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
| 204 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
| 205 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
| 206 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
| 207 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 208 |
+
|
| 209 |
+
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 210 |
+
#else
|
| 211 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
| 212 |
+
|
| 213 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
| 214 |
+
|
| 215 |
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 216 |
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 217 |
+
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 218 |
+
#endif // GGML_CUDA_FA_ALL_QUANTS
|
| 219 |
+
|
| 220 |
+
on_no_fattn_vec_case(Q->ne[0]);
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
| 224 |
+
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
| 225 |
+
ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
|
| 226 |
+
return; \
|
| 227 |
+
} \
|
| 228 |
+
|
| 229 |
+
static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 230 |
+
ggml_tensor * Q = dst->src[1];
|
| 231 |
+
ggml_tensor * K = dst->src[1];
|
| 232 |
+
ggml_tensor * V = dst->src[2];
|
| 233 |
+
|
| 234 |
+
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
| 235 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
| 236 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
| 237 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
| 238 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
| 239 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
| 240 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 241 |
+
|
| 242 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
| 243 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
| 244 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
| 245 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
| 246 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
| 247 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
| 248 |
+
|
| 249 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
| 250 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
| 251 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
| 252 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
| 253 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
| 254 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
| 255 |
+
|
| 256 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
| 257 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
| 258 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
| 259 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
| 260 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
| 261 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
| 262 |
+
|
| 263 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
| 264 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
| 265 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
| 266 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
| 267 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
| 268 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
| 269 |
+
|
| 270 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
| 271 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
| 272 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
| 273 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
| 274 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
| 275 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
| 276 |
+
|
| 277 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
| 278 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
| 279 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
| 280 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
| 281 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
| 282 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 283 |
+
|
| 284 |
+
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 285 |
+
#else
|
| 286 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
| 287 |
+
|
| 288 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
| 289 |
+
|
| 290 |
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 291 |
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 292 |
+
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
| 293 |
+
#endif // GGML_CUDA_FA_ALL_QUANTS
|
| 294 |
+
|
| 295 |
+
on_no_fattn_vec_case(Q->ne[0]);
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 299 |
+
const ggml_tensor * KQV = dst;
|
| 300 |
+
const ggml_tensor * Q = dst->src[0];
|
| 301 |
+
const ggml_tensor * K = dst->src[1];
|
| 302 |
+
const ggml_tensor * V = dst->src[2];
|
| 303 |
+
|
| 304 |
+
ggml_cuda_set_device(ctx.device);
|
| 305 |
+
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
| 306 |
+
const int32_t precision = KQV->op_params[2];
|
| 307 |
+
|
| 308 |
+
const bool quantized_KV = ggml_is_quantized(K->type) || ggml_is_quantized(V->type);
|
| 309 |
+
|
| 310 |
+
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
| 311 |
+
if (cc >= CC_OFFSET_AMD || quantized_KV) {
|
| 312 |
+
if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
| 313 |
+
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
| 314 |
+
} else {
|
| 315 |
+
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
| 316 |
+
}
|
| 317 |
+
return;
|
| 318 |
+
}
|
| 319 |
+
|
| 320 |
+
if (!fast_fp16_available(cc)) {
|
| 321 |
+
if (Q->ne[1] <= 8) {
|
| 322 |
+
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
| 323 |
+
} else {
|
| 324 |
+
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
| 325 |
+
}
|
| 326 |
+
return;
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
if (!fp16_mma_available(cc)) {
|
| 330 |
+
if (Q->ne[1] <= 8) {
|
| 331 |
+
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
| 332 |
+
} else {
|
| 333 |
+
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
| 334 |
+
}
|
| 335 |
+
return;
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
| 339 |
+
if (precision == GGML_PREC_DEFAULT) {
|
| 340 |
+
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
| 341 |
+
return;
|
| 342 |
+
} else if(Q->ne[0] <= 128) {
|
| 343 |
+
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
| 344 |
+
return;
|
| 345 |
+
}
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
| 349 |
}
|
ggml-cuda/mmq.cu
CHANGED
|
@@ -386,7 +386,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
|
| 386 |
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
| 387 |
}
|
| 388 |
|
| 389 |
-
return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
| 390 |
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 391 |
}
|
| 392 |
|
|
@@ -547,7 +547,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
|
| 547 |
const float * x_dmf = (const float *) x_dm;
|
| 548 |
const float * y_df = (const float *) y_ds;
|
| 549 |
|
| 550 |
-
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
|
| 551 |
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
| 552 |
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
| 553 |
}
|
|
|
|
| 386 |
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
| 387 |
}
|
| 388 |
|
| 389 |
+
return vec_dot_q8_0_q8_1_impl<float, QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
| 390 |
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 391 |
}
|
| 392 |
|
|
|
|
| 547 |
const float * x_dmf = (const float *) x_dm;
|
| 548 |
const float * y_df = (const float *) y_ds;
|
| 549 |
|
| 550 |
+
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
|
| 551 |
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
| 552 |
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
| 553 |
}
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
| 2 |
+
|
| 3 |
+
#include "../fattn-vec-f16.cuh"
|
| 4 |
+
|
| 5 |
+
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|