Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, BlipForConditionalGeneration
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
| 6 |
+
|
| 7 |
+
git_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
| 8 |
+
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
| 9 |
+
|
| 10 |
+
blip_processor = AutoProcessor.from_pretrained("Salesfoce/blip-image-captioning-base")
|
| 11 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base")
|
| 12 |
+
|
| 13 |
+
def generate_caption(processor, model, image):
|
| 14 |
+
inputs = processor(image=image, return_tensors="pt")
|
| 15 |
+
|
| 16 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
| 17 |
+
|
| 18 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 19 |
+
|
| 20 |
+
return generated_caption
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def generate_captions(image):
|
| 24 |
+
caption_git = generate_caption(git_processor, git_model, image)
|
| 25 |
+
|
| 26 |
+
caption_blip = generate_caption(blip_processor, blip_model, image)
|
| 27 |
+
|
| 28 |
+
return caption_git, caption_blip
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
examples = [["cats.jpg"]]
|
| 32 |
+
|
| 33 |
+
title = "Interactive demo: ViLT"
|
| 34 |
+
description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on VQAv2, a model that can answer questions from images. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
|
| 35 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>"
|
| 36 |
+
|
| 37 |
+
interface = gr.Interface(fn=answer_question,
|
| 38 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 39 |
+
outputs=[gr.outputs.Textbox(label="Generated caption by GIT"), gr.outputs.Textbox(label="Generated caption by BLIP")],
|
| 40 |
+
examples=examples,
|
| 41 |
+
title=title,
|
| 42 |
+
description=description,
|
| 43 |
+
article=article,
|
| 44 |
+
enable_queue=True)
|
| 45 |
+
interface.launch(debug=True)
|