Spaces:
Runtime error
Runtime error
Update modules/model.py
Browse files- modules/model.py +238 -176
modules/model.py
CHANGED
|
@@ -26,8 +26,9 @@ import modules.safe as _
|
|
| 26 |
from safetensors.torch import load_file
|
| 27 |
|
| 28 |
xformers_available = False
|
| 29 |
-
try:
|
| 30 |
import xformers
|
|
|
|
| 31 |
xformers_available = True
|
| 32 |
except ImportError:
|
| 33 |
pass
|
|
@@ -37,6 +38,7 @@ exists = lambda val: val is not None
|
|
| 37 |
default = lambda val, d: val if exists(val) else d
|
| 38 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 39 |
|
|
|
|
| 40 |
def get_attention_scores(attn, query, key, attention_mask=None):
|
| 41 |
|
| 42 |
if attn.upcast_attention:
|
|
@@ -65,72 +67,89 @@ def get_attention_scores(attn, query, key, attention_mask=None):
|
|
| 65 |
|
| 66 |
return attention_scores
|
| 67 |
|
| 68 |
-
|
| 69 |
def load_lora_attn_procs(model_file, unet, scale=1.0):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
for key, value_dict in lora_grouped_dict.items():
|
| 113 |
-
rank = value_dict["to_k_lora.down.weight"].shape[0]
|
| 114 |
-
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
|
| 115 |
-
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
|
| 116 |
-
|
| 117 |
-
attn_processors[key] = LoRACrossAttnProcessor(
|
| 118 |
-
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank, scale=scale
|
| 119 |
)
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
|
| 131 |
|
| 132 |
-
class CrossAttnProcessor(nn.Module):
|
| 133 |
-
def __call__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
batch_size, sequence_length, _ = hidden_states.shape
|
| 135 |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
| 136 |
|
|
@@ -146,12 +165,12 @@ class CrossAttnProcessor(nn.Module):
|
|
| 146 |
query = attn.to_q(hidden_states)
|
| 147 |
key = attn.to_k(encoder_states)
|
| 148 |
value = attn.to_v(encoder_states)
|
| 149 |
-
|
| 150 |
if qkvo_bias is not None:
|
| 151 |
query += qkvo_bias["q"](hidden_states)
|
| 152 |
key += qkvo_bias["k"](encoder_states)
|
| 153 |
value += qkvo_bias["v"](encoder_states)
|
| 154 |
-
|
| 155 |
query = attn.head_to_batch_dim(query)
|
| 156 |
key = attn.head_to_batch_dim(key)
|
| 157 |
value = attn.head_to_batch_dim(value)
|
|
@@ -161,56 +180,74 @@ class CrossAttnProcessor(nn.Module):
|
|
| 161 |
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
| 162 |
w = img_state[sequence_length].to(query.device)
|
| 163 |
cross_attention_weight = weight_func(w, sigma, attention_scores)
|
| 164 |
-
attention_scores += torch.repeat_interleave(
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
# calc probs
|
| 167 |
attention_probs = attention_scores.softmax(dim=-1)
|
| 168 |
attention_probs = attention_probs.to(query.dtype)
|
| 169 |
hidden_states = torch.bmm(attention_probs, value)
|
| 170 |
-
|
| 171 |
elif xformers_available:
|
| 172 |
hidden_states = xformers.ops.memory_efficient_attention(
|
| 173 |
-
query.contiguous(),
|
|
|
|
|
|
|
|
|
|
| 174 |
)
|
| 175 |
hidden_states = hidden_states.to(query.dtype)
|
| 176 |
-
|
| 177 |
else:
|
| 178 |
q_bucket_size = 512
|
| 179 |
k_bucket_size = 1024
|
| 180 |
-
|
| 181 |
# use flash-attention
|
| 182 |
-
hidden_states =
|
| 183 |
-
query.contiguous(),
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
)
|
| 186 |
hidden_states = hidden_states.to(query.dtype)
|
| 187 |
-
|
| 188 |
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 189 |
|
| 190 |
# linear proj
|
| 191 |
hidden_states = attn.to_out[0](hidden_states)
|
| 192 |
-
|
| 193 |
if qkvo_bias is not None:
|
| 194 |
hidden_states += qkvo_bias["o"](hidden_states)
|
| 195 |
-
|
| 196 |
# dropout
|
| 197 |
hidden_states = attn.to_out[1](hidden_states)
|
| 198 |
|
| 199 |
return hidden_states
|
| 200 |
-
|
| 201 |
|
| 202 |
class LoRACrossAttnProcessor(CrossAttnProcessor):
|
| 203 |
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, scale=1.0):
|
| 204 |
super().__init__()
|
| 205 |
|
| 206 |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
| 207 |
-
self.to_k_lora = LoRALinearLayer(
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
| 210 |
self.scale = scale
|
| 211 |
-
|
| 212 |
def __call__(
|
| 213 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
):
|
| 215 |
scale = self.scale
|
| 216 |
qkvo_bias = {
|
|
@@ -219,33 +256,37 @@ class LoRACrossAttnProcessor(CrossAttnProcessor):
|
|
| 219 |
"v": lambda inputs: scale * self.to_v_lora(inputs),
|
| 220 |
"o": lambda inputs: scale * self.to_out_lora(inputs),
|
| 221 |
}
|
| 222 |
-
return super().__call__(
|
|
|
|
|
|
|
| 223 |
|
| 224 |
|
| 225 |
class LoRALinearLayer(nn.Module):
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
|
| 248 |
-
|
| 249 |
|
| 250 |
|
| 251 |
class ModelWrapper:
|
|
@@ -287,8 +328,13 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 287 |
scheduler=scheduler,
|
| 288 |
)
|
| 289 |
self.setup_unet(self.unet)
|
| 290 |
-
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
def setup_unet(self, unet):
|
| 293 |
unet = unet.to(self.device)
|
| 294 |
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
|
@@ -301,14 +347,14 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 301 |
library = importlib.import_module("k_diffusion")
|
| 302 |
sampling = getattr(library, "sampling")
|
| 303 |
return getattr(sampling, scheduler_type)
|
| 304 |
-
|
| 305 |
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
|
| 306 |
uncond, cond = text_ids[0], text_ids[1]
|
| 307 |
-
|
| 308 |
img_state = []
|
| 309 |
if state is None:
|
| 310 |
return torch.FloatTensor(0)
|
| 311 |
-
|
| 312 |
for k, v in state.items():
|
| 313 |
if v["map"] is None:
|
| 314 |
continue
|
|
@@ -319,14 +365,16 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 319 |
truncation=True,
|
| 320 |
add_special_tokens=False,
|
| 321 |
).input_ids
|
| 322 |
-
|
| 323 |
dotmap = v["map"] < 255
|
| 324 |
-
arr = torch.from_numpy(
|
|
|
|
|
|
|
| 325 |
img_state.append((v_input, arr))
|
| 326 |
-
|
| 327 |
if len(img_state) == 0:
|
| 328 |
return torch.FloatTensor(0)
|
| 329 |
-
|
| 330 |
w_tensors = dict()
|
| 331 |
cond = cond.tolist()
|
| 332 |
uncond = uncond.tolist()
|
|
@@ -341,26 +389,31 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 341 |
for v_as_tokens, img_where_color in img_state:
|
| 342 |
is_in = 0
|
| 343 |
|
| 344 |
-
ret =
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
for idx, tok in enumerate(cond):
|
| 352 |
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
| 353 |
is_in = 1
|
| 354 |
-
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] +=
|
| 355 |
-
|
| 356 |
for idx, tok in enumerate(uncond):
|
| 357 |
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
| 358 |
-
is_in = 1
|
| 359 |
-
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] +=
|
| 360 |
|
| 361 |
if not is_in == 1:
|
| 362 |
print(f"tokens {v_as_tokens} not found in text")
|
| 363 |
-
|
| 364 |
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
| 365 |
scale_ratio *= 2
|
| 366 |
|
|
@@ -432,7 +485,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 432 |
):
|
| 433 |
return torch.device(module._hf_hook.execution_device)
|
| 434 |
return self.device
|
| 435 |
-
|
| 436 |
def decode_latents(self, latents):
|
| 437 |
latents = latents.to(self.device, dtype=self.vae.dtype)
|
| 438 |
latents = 1 / 0.18215 * latents
|
|
@@ -533,7 +586,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 533 |
pww_attn_weight=1.0,
|
| 534 |
sampler_name="",
|
| 535 |
sampler_opt={},
|
| 536 |
-
scale_ratio=8.0
|
| 537 |
):
|
| 538 |
sampler = self.get_scheduler(sampler_name)
|
| 539 |
if image is not None:
|
|
@@ -556,8 +609,10 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 556 |
# 3. Encode input prompt
|
| 557 |
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
| 558 |
text_embeddings = text_embeddings.to(self.unet.dtype)
|
| 559 |
-
|
| 560 |
-
init_timestep =
|
|
|
|
|
|
|
| 561 |
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
|
| 562 |
text_embeddings.device, dtype=text_embeddings.dtype
|
| 563 |
)
|
|
@@ -581,17 +636,15 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 581 |
)
|
| 582 |
|
| 583 |
img_state = self.encode_sketchs(
|
| 584 |
-
pww_state,
|
| 585 |
g_strength=pww_attn_weight,
|
| 586 |
text_ids=text_ids,
|
| 587 |
)
|
| 588 |
-
|
| 589 |
def model_fn(x, sigma):
|
| 590 |
-
|
| 591 |
latent_model_input = torch.cat([x] * 2)
|
| 592 |
-
weight_func = (
|
| 593 |
-
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
| 594 |
-
)
|
| 595 |
encoder_state = {
|
| 596 |
"img_state": img_state,
|
| 597 |
"states": text_embeddings,
|
|
@@ -744,19 +797,17 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 744 |
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
| 745 |
latents.device
|
| 746 |
)
|
| 747 |
-
|
| 748 |
img_state = self.encode_sketchs(
|
| 749 |
-
pww_state,
|
| 750 |
g_strength=pww_attn_weight,
|
| 751 |
text_ids=text_ids,
|
| 752 |
)
|
| 753 |
|
| 754 |
def model_fn(x, sigma):
|
| 755 |
-
|
| 756 |
latent_model_input = torch.cat([x] * 2)
|
| 757 |
-
weight_func = (
|
| 758 |
-
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
| 759 |
-
)
|
| 760 |
encoder_state = {
|
| 761 |
"img_state": img_state,
|
| 762 |
"states": text_embeddings,
|
|
@@ -802,7 +853,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 802 |
sampler_name=sampler_name,
|
| 803 |
sampler_opt=sampler_opt,
|
| 804 |
pww_state=None,
|
| 805 |
-
pww_attn_weight=pww_attn_weight/2,
|
| 806 |
)
|
| 807 |
|
| 808 |
# 8. Post-processing
|
|
@@ -816,76 +867,83 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
| 816 |
|
| 817 |
|
| 818 |
class FlashAttentionFunction(Function):
|
| 819 |
-
|
| 820 |
-
|
| 821 |
@staticmethod
|
| 822 |
@torch.no_grad()
|
| 823 |
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
| 824 |
-
"""
|
| 825 |
|
| 826 |
device = q.device
|
| 827 |
max_neg_value = -torch.finfo(q.dtype).max
|
| 828 |
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
| 829 |
|
| 830 |
o = torch.zeros_like(q)
|
| 831 |
-
all_row_sums = torch.zeros((*q.shape[:-1], 1), device
|
| 832 |
-
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device
|
| 833 |
|
| 834 |
-
scale =
|
| 835 |
|
| 836 |
if not exists(mask):
|
| 837 |
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
| 838 |
else:
|
| 839 |
-
mask = rearrange(mask,
|
| 840 |
-
mask = mask.split(q_bucket_size, dim
|
| 841 |
|
| 842 |
row_splits = zip(
|
| 843 |
-
q.split(q_bucket_size, dim
|
| 844 |
-
o.split(q_bucket_size, dim
|
| 845 |
mask,
|
| 846 |
-
all_row_sums.split(q_bucket_size, dim
|
| 847 |
-
all_row_maxes.split(q_bucket_size, dim
|
| 848 |
)
|
| 849 |
|
| 850 |
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
| 851 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
| 852 |
|
| 853 |
col_splits = zip(
|
| 854 |
-
k.split(k_bucket_size, dim
|
| 855 |
-
v.split(k_bucket_size, dim
|
| 856 |
)
|
| 857 |
|
| 858 |
for k_ind, (kc, vc) in enumerate(col_splits):
|
| 859 |
k_start_index = k_ind * k_bucket_size
|
| 860 |
|
| 861 |
-
attn_weights = einsum(
|
| 862 |
|
| 863 |
if exists(row_mask):
|
| 864 |
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
| 865 |
|
| 866 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
| 867 |
-
causal_mask = torch.ones(
|
|
|
|
|
|
|
| 868 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
| 869 |
|
| 870 |
-
block_row_maxes = attn_weights.amax(dim
|
| 871 |
attn_weights -= block_row_maxes
|
| 872 |
exp_weights = torch.exp(attn_weights)
|
| 873 |
|
| 874 |
if exists(row_mask):
|
| 875 |
-
exp_weights.masked_fill_(~row_mask, 0.)
|
| 876 |
|
| 877 |
-
block_row_sums = exp_weights.sum(dim
|
|
|
|
|
|
|
| 878 |
|
| 879 |
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
| 880 |
|
| 881 |
-
exp_values = einsum(
|
| 882 |
|
| 883 |
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
| 884 |
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
| 885 |
|
| 886 |
-
new_row_sums =
|
|
|
|
|
|
|
|
|
|
| 887 |
|
| 888 |
-
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
|
|
|
|
|
|
|
| 889 |
|
| 890 |
row_maxes.copy_(new_row_maxes)
|
| 891 |
row_sums.copy_(new_row_sums)
|
|
@@ -900,7 +958,7 @@ class FlashAttentionFunction(Function):
|
|
| 900 |
@staticmethod
|
| 901 |
@torch.no_grad()
|
| 902 |
def backward(ctx, do):
|
| 903 |
-
"""
|
| 904 |
|
| 905 |
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
| 906 |
q, k, v, o, lse = ctx.saved_tensors
|
|
@@ -915,49 +973,53 @@ class FlashAttentionFunction(Function):
|
|
| 915 |
dv = torch.zeros_like(v)
|
| 916 |
|
| 917 |
row_splits = zip(
|
| 918 |
-
q.split(q_bucket_size, dim
|
| 919 |
-
o.split(q_bucket_size, dim
|
| 920 |
-
do.split(q_bucket_size, dim
|
| 921 |
mask,
|
| 922 |
-
lse.split(q_bucket_size, dim
|
| 923 |
-
dq.split(q_bucket_size, dim
|
| 924 |
)
|
| 925 |
|
| 926 |
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
| 927 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
| 928 |
|
| 929 |
col_splits = zip(
|
| 930 |
-
k.split(k_bucket_size, dim
|
| 931 |
-
v.split(k_bucket_size, dim
|
| 932 |
-
dk.split(k_bucket_size, dim
|
| 933 |
-
dv.split(k_bucket_size, dim
|
| 934 |
)
|
| 935 |
|
| 936 |
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
| 937 |
k_start_index = k_ind * k_bucket_size
|
| 938 |
|
| 939 |
-
attn_weights = einsum(
|
| 940 |
|
| 941 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
| 942 |
-
causal_mask = torch.ones(
|
|
|
|
|
|
|
| 943 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
| 944 |
|
| 945 |
p = torch.exp(attn_weights - lsec)
|
| 946 |
|
| 947 |
if exists(row_mask):
|
| 948 |
-
p.masked_fill_(~row_mask, 0.)
|
| 949 |
|
| 950 |
-
dv_chunk = einsum(
|
| 951 |
-
dp = einsum(
|
| 952 |
|
| 953 |
-
D = (doc * oc).sum(dim
|
| 954 |
ds = p * scale * (dp - D)
|
| 955 |
|
| 956 |
-
dq_chunk = einsum(
|
| 957 |
-
dk_chunk = einsum(
|
| 958 |
|
| 959 |
dqc.add_(dq_chunk)
|
| 960 |
dkc.add_(dk_chunk)
|
| 961 |
dvc.add_(dv_chunk)
|
| 962 |
|
| 963 |
-
return dq, dk, dv, None, None, None, None
|
|
|
|
|
|
|
|
|
| 26 |
from safetensors.torch import load_file
|
| 27 |
|
| 28 |
xformers_available = False
|
| 29 |
+
try:
|
| 30 |
import xformers
|
| 31 |
+
|
| 32 |
xformers_available = True
|
| 33 |
except ImportError:
|
| 34 |
pass
|
|
|
|
| 38 |
default = lambda val, d: val if exists(val) else d
|
| 39 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 40 |
|
| 41 |
+
|
| 42 |
def get_attention_scores(attn, query, key, attention_mask=None):
|
| 43 |
|
| 44 |
if attn.upcast_attention:
|
|
|
|
| 67 |
|
| 68 |
return attention_scores
|
| 69 |
|
| 70 |
+
|
| 71 |
def load_lora_attn_procs(model_file, unet, scale=1.0):
|
| 72 |
+
|
| 73 |
+
if Path(model_file).suffix == ".pt":
|
| 74 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
| 75 |
+
else:
|
| 76 |
+
state_dict = load_file(model_file, device="cpu")
|
| 77 |
+
|
| 78 |
+
if any("lora_unet_down_blocks" in k for k in state_dict.keys()):
|
| 79 |
+
# convert ldm format lora
|
| 80 |
+
df_lora = {}
|
| 81 |
+
attn_numlayer = re.compile(r"_attn(\d)_to_([qkv]|out).lora_")
|
| 82 |
+
alpha_numlayer = re.compile(r"_attn(\d)_to_([qkv]|out).alpha")
|
| 83 |
+
for k, v in state_dict.items():
|
| 84 |
+
if "attn" not in k or "lora_te" in k:
|
| 85 |
+
# currently not support: ff, clip-attn
|
| 86 |
+
continue
|
| 87 |
+
k = k.replace("lora_unet_down_blocks_", "down_blocks.")
|
| 88 |
+
k = k.replace("lora_unet_up_blocks_", "up_blocks.")
|
| 89 |
+
k = k.replace("lora_unet_mid_block_", "mid_block_")
|
| 90 |
+
k = k.replace("_attentions_", ".attentions.")
|
| 91 |
+
k = k.replace("_transformer_blocks_", ".transformer_blocks.")
|
| 92 |
+
k = k.replace("to_out_0", "to_out")
|
| 93 |
+
k = attn_numlayer.sub(r".attn\1.processor.to_\2_lora.", k)
|
| 94 |
+
k = alpha_numlayer.sub(r".attn\1.processor.to_\2_lora.alpha", k)
|
| 95 |
+
df_lora[k] = v
|
| 96 |
+
state_dict = df_lora
|
| 97 |
+
|
| 98 |
+
# fill attn processors
|
| 99 |
+
attn_processors = {}
|
| 100 |
+
|
| 101 |
+
is_lora = all("lora" in k for k in state_dict.keys())
|
| 102 |
+
|
| 103 |
+
if is_lora:
|
| 104 |
+
lora_grouped_dict = defaultdict(dict)
|
| 105 |
+
for key, value in state_dict.items():
|
| 106 |
+
if "alpha" in key:
|
| 107 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(
|
| 108 |
+
key.split(".")[-2:]
|
| 109 |
+
)
|
| 110 |
+
else:
|
| 111 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(
|
| 112 |
+
key.split(".")[-3:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
| 114 |
+
lora_grouped_dict[attn_processor_key][sub_key] = value
|
| 115 |
+
|
| 116 |
+
for key, value_dict in lora_grouped_dict.items():
|
| 117 |
+
rank = value_dict["to_k_lora.down.weight"].shape[0]
|
| 118 |
+
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
|
| 119 |
+
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
|
| 120 |
+
|
| 121 |
+
attn_processors[key] = LoRACrossAttnProcessor(
|
| 122 |
+
hidden_size=hidden_size,
|
| 123 |
+
cross_attention_dim=cross_attention_dim,
|
| 124 |
+
rank=rank,
|
| 125 |
+
scale=scale,
|
| 126 |
+
)
|
| 127 |
+
attn_processors[key].load_state_dict(value_dict, strict=False)
|
| 128 |
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError(
|
| 131 |
+
f"{model_file} does not seem to be in the correct format expected by LoRA training."
|
| 132 |
+
)
|
| 133 |
|
| 134 |
+
# set correct dtype & device
|
| 135 |
+
attn_processors = {
|
| 136 |
+
k: v.to(device=unet.device, dtype=unet.dtype)
|
| 137 |
+
for k, v in attn_processors.items()
|
| 138 |
+
}
|
| 139 |
|
| 140 |
+
# set layers
|
| 141 |
+
unet.set_attn_processor(attn_processors)
|
| 142 |
|
| 143 |
|
| 144 |
+
class CrossAttnProcessor(nn.Module):
|
| 145 |
+
def __call__(
|
| 146 |
+
self,
|
| 147 |
+
attn,
|
| 148 |
+
hidden_states,
|
| 149 |
+
encoder_hidden_states=None,
|
| 150 |
+
attention_mask=None,
|
| 151 |
+
qkvo_bias=None,
|
| 152 |
+
):
|
| 153 |
batch_size, sequence_length, _ = hidden_states.shape
|
| 154 |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
| 155 |
|
|
|
|
| 165 |
query = attn.to_q(hidden_states)
|
| 166 |
key = attn.to_k(encoder_states)
|
| 167 |
value = attn.to_v(encoder_states)
|
| 168 |
+
|
| 169 |
if qkvo_bias is not None:
|
| 170 |
query += qkvo_bias["q"](hidden_states)
|
| 171 |
key += qkvo_bias["k"](encoder_states)
|
| 172 |
value += qkvo_bias["v"](encoder_states)
|
| 173 |
+
|
| 174 |
query = attn.head_to_batch_dim(query)
|
| 175 |
key = attn.head_to_batch_dim(key)
|
| 176 |
value = attn.head_to_batch_dim(value)
|
|
|
|
| 180 |
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
| 181 |
w = img_state[sequence_length].to(query.device)
|
| 182 |
cross_attention_weight = weight_func(w, sigma, attention_scores)
|
| 183 |
+
attention_scores += torch.repeat_interleave(
|
| 184 |
+
cross_attention_weight, repeats=attn.heads, dim=0
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
# calc probs
|
| 188 |
attention_probs = attention_scores.softmax(dim=-1)
|
| 189 |
attention_probs = attention_probs.to(query.dtype)
|
| 190 |
hidden_states = torch.bmm(attention_probs, value)
|
| 191 |
+
|
| 192 |
elif xformers_available:
|
| 193 |
hidden_states = xformers.ops.memory_efficient_attention(
|
| 194 |
+
query.contiguous(),
|
| 195 |
+
key.contiguous(),
|
| 196 |
+
value.contiguous(),
|
| 197 |
+
attn_bias=attention_mask,
|
| 198 |
)
|
| 199 |
hidden_states = hidden_states.to(query.dtype)
|
| 200 |
+
|
| 201 |
else:
|
| 202 |
q_bucket_size = 512
|
| 203 |
k_bucket_size = 1024
|
| 204 |
+
|
| 205 |
# use flash-attention
|
| 206 |
+
hidden_states = FlashAttn.apply(
|
| 207 |
+
query.contiguous(),
|
| 208 |
+
key.contiguous(),
|
| 209 |
+
value.contiguous(),
|
| 210 |
+
attention_mask,
|
| 211 |
+
causal=False,
|
| 212 |
+
q_bucket_size=q_bucket_size,
|
| 213 |
+
k_bucket_size=k_bucket_size,
|
| 214 |
)
|
| 215 |
hidden_states = hidden_states.to(query.dtype)
|
| 216 |
+
|
| 217 |
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 218 |
|
| 219 |
# linear proj
|
| 220 |
hidden_states = attn.to_out[0](hidden_states)
|
| 221 |
+
|
| 222 |
if qkvo_bias is not None:
|
| 223 |
hidden_states += qkvo_bias["o"](hidden_states)
|
| 224 |
+
|
| 225 |
# dropout
|
| 226 |
hidden_states = attn.to_out[1](hidden_states)
|
| 227 |
|
| 228 |
return hidden_states
|
| 229 |
+
|
| 230 |
|
| 231 |
class LoRACrossAttnProcessor(CrossAttnProcessor):
|
| 232 |
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, scale=1.0):
|
| 233 |
super().__init__()
|
| 234 |
|
| 235 |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
| 236 |
+
self.to_k_lora = LoRALinearLayer(
|
| 237 |
+
cross_attention_dim or hidden_size, hidden_size, rank
|
| 238 |
+
)
|
| 239 |
+
self.to_v_lora = LoRALinearLayer(
|
| 240 |
+
cross_attention_dim or hidden_size, hidden_size, rank
|
| 241 |
+
)
|
| 242 |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
| 243 |
self.scale = scale
|
| 244 |
+
|
| 245 |
def __call__(
|
| 246 |
+
self,
|
| 247 |
+
attn,
|
| 248 |
+
hidden_states,
|
| 249 |
+
encoder_hidden_states=None,
|
| 250 |
+
attention_mask=None,
|
| 251 |
):
|
| 252 |
scale = self.scale
|
| 253 |
qkvo_bias = {
|
|
|
|
| 256 |
"v": lambda inputs: scale * self.to_v_lora(inputs),
|
| 257 |
"o": lambda inputs: scale * self.to_out_lora(inputs),
|
| 258 |
}
|
| 259 |
+
return super().__call__(
|
| 260 |
+
attn, hidden_states, encoder_hidden_states, attention_mask, qkvo_bias
|
| 261 |
+
)
|
| 262 |
|
| 263 |
|
| 264 |
class LoRALinearLayer(nn.Module):
|
| 265 |
+
def __init__(self, in_features, out_features, rank=4):
|
| 266 |
+
super().__init__()
|
| 267 |
|
| 268 |
+
if rank > min(in_features, out_features):
|
| 269 |
+
raise ValueError(
|
| 270 |
+
f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}"
|
| 271 |
+
)
|
| 272 |
|
| 273 |
+
self.down = nn.Linear(in_features, rank, bias=False)
|
| 274 |
+
self.up = nn.Linear(rank, out_features, bias=False)
|
| 275 |
+
self.scale = 1.0
|
| 276 |
+
self.alpha = rank
|
| 277 |
|
| 278 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
| 279 |
+
nn.init.zeros_(self.up.weight)
|
| 280 |
|
| 281 |
+
def forward(self, hidden_states):
|
| 282 |
+
orig_dtype = hidden_states.dtype
|
| 283 |
+
dtype = self.down.weight.dtype
|
| 284 |
+
rank = self.down.out_features
|
| 285 |
|
| 286 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
| 287 |
+
up_hidden_states = self.up(down_hidden_states) * (self.alpha / rank)
|
| 288 |
|
| 289 |
+
return up_hidden_states.to(orig_dtype)
|
| 290 |
|
| 291 |
|
| 292 |
class ModelWrapper:
|
|
|
|
| 328 |
scheduler=scheduler,
|
| 329 |
)
|
| 330 |
self.setup_unet(self.unet)
|
| 331 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(
|
| 332 |
+
self.tokenizer, self.text_encoder
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
def set_clip_skip(self, n):
|
| 336 |
+
self.prompt_parser.CLIP_stop_at_last_layers = n
|
| 337 |
+
|
| 338 |
def setup_unet(self, unet):
|
| 339 |
unet = unet.to(self.device)
|
| 340 |
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
|
|
|
| 347 |
library = importlib.import_module("k_diffusion")
|
| 348 |
sampling = getattr(library, "sampling")
|
| 349 |
return getattr(sampling, scheduler_type)
|
| 350 |
+
|
| 351 |
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
|
| 352 |
uncond, cond = text_ids[0], text_ids[1]
|
| 353 |
+
|
| 354 |
img_state = []
|
| 355 |
if state is None:
|
| 356 |
return torch.FloatTensor(0)
|
| 357 |
+
|
| 358 |
for k, v in state.items():
|
| 359 |
if v["map"] is None:
|
| 360 |
continue
|
|
|
|
| 365 |
truncation=True,
|
| 366 |
add_special_tokens=False,
|
| 367 |
).input_ids
|
| 368 |
+
|
| 369 |
dotmap = v["map"] < 255
|
| 370 |
+
arr = torch.from_numpy(
|
| 371 |
+
dotmap.astype(float) * float(v["weight"]) * g_strength
|
| 372 |
+
)
|
| 373 |
img_state.append((v_input, arr))
|
| 374 |
+
|
| 375 |
if len(img_state) == 0:
|
| 376 |
return torch.FloatTensor(0)
|
| 377 |
+
|
| 378 |
w_tensors = dict()
|
| 379 |
cond = cond.tolist()
|
| 380 |
uncond = uncond.tolist()
|
|
|
|
| 389 |
for v_as_tokens, img_where_color in img_state:
|
| 390 |
is_in = 0
|
| 391 |
|
| 392 |
+
ret = (
|
| 393 |
+
F.interpolate(
|
| 394 |
+
img_where_color.unsqueeze(0).unsqueeze(1),
|
| 395 |
+
scale_factor=1 / scale_ratio,
|
| 396 |
+
mode="bilinear",
|
| 397 |
+
align_corners=True,
|
| 398 |
+
)
|
| 399 |
+
.squeeze()
|
| 400 |
+
.reshape(-1, 1)
|
| 401 |
+
.repeat(1, len(v_as_tokens))
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
for idx, tok in enumerate(cond):
|
| 405 |
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
| 406 |
is_in = 1
|
| 407 |
+
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
| 408 |
+
|
| 409 |
for idx, tok in enumerate(uncond):
|
| 410 |
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
| 411 |
+
is_in = 1
|
| 412 |
+
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
| 413 |
|
| 414 |
if not is_in == 1:
|
| 415 |
print(f"tokens {v_as_tokens} not found in text")
|
| 416 |
+
|
| 417 |
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
| 418 |
scale_ratio *= 2
|
| 419 |
|
|
|
|
| 485 |
):
|
| 486 |
return torch.device(module._hf_hook.execution_device)
|
| 487 |
return self.device
|
| 488 |
+
|
| 489 |
def decode_latents(self, latents):
|
| 490 |
latents = latents.to(self.device, dtype=self.vae.dtype)
|
| 491 |
latents = 1 / 0.18215 * latents
|
|
|
|
| 586 |
pww_attn_weight=1.0,
|
| 587 |
sampler_name="",
|
| 588 |
sampler_opt={},
|
| 589 |
+
scale_ratio=8.0,
|
| 590 |
):
|
| 591 |
sampler = self.get_scheduler(sampler_name)
|
| 592 |
if image is not None:
|
|
|
|
| 609 |
# 3. Encode input prompt
|
| 610 |
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
| 611 |
text_embeddings = text_embeddings.to(self.unet.dtype)
|
| 612 |
+
|
| 613 |
+
init_timestep = (
|
| 614 |
+
int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0
|
| 615 |
+
)
|
| 616 |
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
|
| 617 |
text_embeddings.device, dtype=text_embeddings.dtype
|
| 618 |
)
|
|
|
|
| 636 |
)
|
| 637 |
|
| 638 |
img_state = self.encode_sketchs(
|
| 639 |
+
pww_state,
|
| 640 |
g_strength=pww_attn_weight,
|
| 641 |
text_ids=text_ids,
|
| 642 |
)
|
| 643 |
+
|
| 644 |
def model_fn(x, sigma):
|
| 645 |
+
|
| 646 |
latent_model_input = torch.cat([x] * 2)
|
| 647 |
+
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
|
|
|
|
|
|
| 648 |
encoder_state = {
|
| 649 |
"img_state": img_state,
|
| 650 |
"states": text_embeddings,
|
|
|
|
| 797 |
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
| 798 |
latents.device
|
| 799 |
)
|
| 800 |
+
|
| 801 |
img_state = self.encode_sketchs(
|
| 802 |
+
pww_state,
|
| 803 |
g_strength=pww_attn_weight,
|
| 804 |
text_ids=text_ids,
|
| 805 |
)
|
| 806 |
|
| 807 |
def model_fn(x, sigma):
|
| 808 |
+
|
| 809 |
latent_model_input = torch.cat([x] * 2)
|
| 810 |
+
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
|
|
|
|
|
|
| 811 |
encoder_state = {
|
| 812 |
"img_state": img_state,
|
| 813 |
"states": text_embeddings,
|
|
|
|
| 853 |
sampler_name=sampler_name,
|
| 854 |
sampler_opt=sampler_opt,
|
| 855 |
pww_state=None,
|
| 856 |
+
pww_attn_weight=pww_attn_weight / 2,
|
| 857 |
)
|
| 858 |
|
| 859 |
# 8. Post-processing
|
|
|
|
| 867 |
|
| 868 |
|
| 869 |
class FlashAttentionFunction(Function):
|
|
|
|
|
|
|
| 870 |
@staticmethod
|
| 871 |
@torch.no_grad()
|
| 872 |
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
| 873 |
+
"""Algorithm 2 in the paper"""
|
| 874 |
|
| 875 |
device = q.device
|
| 876 |
max_neg_value = -torch.finfo(q.dtype).max
|
| 877 |
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
| 878 |
|
| 879 |
o = torch.zeros_like(q)
|
| 880 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device)
|
| 881 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device)
|
| 882 |
|
| 883 |
+
scale = q.shape[-1] ** -0.5
|
| 884 |
|
| 885 |
if not exists(mask):
|
| 886 |
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
| 887 |
else:
|
| 888 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
| 889 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
| 890 |
|
| 891 |
row_splits = zip(
|
| 892 |
+
q.split(q_bucket_size, dim=-2),
|
| 893 |
+
o.split(q_bucket_size, dim=-2),
|
| 894 |
mask,
|
| 895 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
| 896 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
| 897 |
)
|
| 898 |
|
| 899 |
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
| 900 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
| 901 |
|
| 902 |
col_splits = zip(
|
| 903 |
+
k.split(k_bucket_size, dim=-2),
|
| 904 |
+
v.split(k_bucket_size, dim=-2),
|
| 905 |
)
|
| 906 |
|
| 907 |
for k_ind, (kc, vc) in enumerate(col_splits):
|
| 908 |
k_start_index = k_ind * k_bucket_size
|
| 909 |
|
| 910 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
| 911 |
|
| 912 |
if exists(row_mask):
|
| 913 |
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
| 914 |
|
| 915 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
| 916 |
+
causal_mask = torch.ones(
|
| 917 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
| 918 |
+
).triu(q_start_index - k_start_index + 1)
|
| 919 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
| 920 |
|
| 921 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
| 922 |
attn_weights -= block_row_maxes
|
| 923 |
exp_weights = torch.exp(attn_weights)
|
| 924 |
|
| 925 |
if exists(row_mask):
|
| 926 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
| 927 |
|
| 928 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
|
| 929 |
+
min=EPSILON
|
| 930 |
+
)
|
| 931 |
|
| 932 |
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
| 933 |
|
| 934 |
+
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
| 935 |
|
| 936 |
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
| 937 |
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
| 938 |
|
| 939 |
+
new_row_sums = (
|
| 940 |
+
exp_row_max_diff * row_sums
|
| 941 |
+
+ exp_block_row_max_diff * block_row_sums
|
| 942 |
+
)
|
| 943 |
|
| 944 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
|
| 945 |
+
(exp_block_row_max_diff / new_row_sums) * exp_values
|
| 946 |
+
)
|
| 947 |
|
| 948 |
row_maxes.copy_(new_row_maxes)
|
| 949 |
row_sums.copy_(new_row_sums)
|
|
|
|
| 958 |
@staticmethod
|
| 959 |
@torch.no_grad()
|
| 960 |
def backward(ctx, do):
|
| 961 |
+
"""Algorithm 4 in the paper"""
|
| 962 |
|
| 963 |
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
| 964 |
q, k, v, o, lse = ctx.saved_tensors
|
|
|
|
| 973 |
dv = torch.zeros_like(v)
|
| 974 |
|
| 975 |
row_splits = zip(
|
| 976 |
+
q.split(q_bucket_size, dim=-2),
|
| 977 |
+
o.split(q_bucket_size, dim=-2),
|
| 978 |
+
do.split(q_bucket_size, dim=-2),
|
| 979 |
mask,
|
| 980 |
+
lse.split(q_bucket_size, dim=-2),
|
| 981 |
+
dq.split(q_bucket_size, dim=-2),
|
| 982 |
)
|
| 983 |
|
| 984 |
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
| 985 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
| 986 |
|
| 987 |
col_splits = zip(
|
| 988 |
+
k.split(k_bucket_size, dim=-2),
|
| 989 |
+
v.split(k_bucket_size, dim=-2),
|
| 990 |
+
dk.split(k_bucket_size, dim=-2),
|
| 991 |
+
dv.split(k_bucket_size, dim=-2),
|
| 992 |
)
|
| 993 |
|
| 994 |
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
| 995 |
k_start_index = k_ind * k_bucket_size
|
| 996 |
|
| 997 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
| 998 |
|
| 999 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
| 1000 |
+
causal_mask = torch.ones(
|
| 1001 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
| 1002 |
+
).triu(q_start_index - k_start_index + 1)
|
| 1003 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
| 1004 |
|
| 1005 |
p = torch.exp(attn_weights - lsec)
|
| 1006 |
|
| 1007 |
if exists(row_mask):
|
| 1008 |
+
p.masked_fill_(~row_mask, 0.0)
|
| 1009 |
|
| 1010 |
+
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
|
| 1011 |
+
dp = einsum("... i d, ... j d -> ... i j", doc, vc)
|
| 1012 |
|
| 1013 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
| 1014 |
ds = p * scale * (dp - D)
|
| 1015 |
|
| 1016 |
+
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
|
| 1017 |
+
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)
|
| 1018 |
|
| 1019 |
dqc.add_(dq_chunk)
|
| 1020 |
dkc.add_(dk_chunk)
|
| 1021 |
dvc.add_(dv_chunk)
|
| 1022 |
|
| 1023 |
+
return dq, dk, dv, None, None, None, None
|
| 1024 |
+
|
| 1025 |
+
FlashAttn = FlashAttentionFunction()
|