Spaces:
Sleeping
Sleeping
Create App.py
Browse files
App.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - Deploy to Hugging Face Space (New β Gradio β Paste this)
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Tuple, Dict, Any
|
| 6 |
+
import io
|
| 7 |
+
import base64
|
| 8 |
+
import warnings
|
| 9 |
+
warnings.filterwarnings('ignore')
|
| 10 |
+
|
| 11 |
+
class DSPreprocessor:
|
| 12 |
+
"""Auto-fixes the 5 things that waste your time"""
|
| 13 |
+
|
| 14 |
+
def __init__(self):
|
| 15 |
+
self.report = {"actions": [], "warnings": [], "stats": {}}
|
| 16 |
+
|
| 17 |
+
def fit_transform(self, df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict]:
|
| 18 |
+
# 1. Memory Killer: Downcast numeric types (50-90% RAM savings)
|
| 19 |
+
start_mem = df.memory_usage(deep=True).sum() / 1024**2
|
| 20 |
+
for col in df.select_dtypes(include=['int64', 'float64']).columns:
|
| 21 |
+
col_type = df[col].dtype
|
| 22 |
+
try:
|
| 23 |
+
if col_type == 'int64':
|
| 24 |
+
df[col] = pd.to_numeric(df[col], downcast='integer')
|
| 25 |
+
else:
|
| 26 |
+
df[col] = pd.to_numeric(df[col], downcast='float')
|
| 27 |
+
if df[col].dtype != col_type:
|
| 28 |
+
self.report["actions"].append(f"β {col}: {col_type} β {df[col].dtype}")
|
| 29 |
+
except:
|
| 30 |
+
pass
|
| 31 |
+
|
| 32 |
+
# 2. DateTime Hell: Auto-detect and parse (handles 3 formats in one column)
|
| 33 |
+
for col in df.select_dtypes(include=['object']).columns:
|
| 34 |
+
try:
|
| 35 |
+
# Try parsing if >30% looks like dates
|
| 36 |
+
parsed = pd.to_datetime(df[col], errors='coerce', infer_datetime_format=True)
|
| 37 |
+
if parsed.notnull().sum() > len(df) * 0.3:
|
| 38 |
+
df[col] = parsed
|
| 39 |
+
self.report["actions"].append(f"β {col}: Parsed datetime ({parsed.notnull().sum()} valid)")
|
| 40 |
+
except:
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
# 3. Categorical Explosion: Hash high-cardinality strings (prevents memory blowup)
|
| 44 |
+
for col in df.select_dtypes(include=['object']).columns:
|
| 45 |
+
n_unique = df[col].nunique()
|
| 46 |
+
if n_unique > len(df) * 0.5:
|
| 47 |
+
df[col] = df[col].astype('category').cat.codes
|
| 48 |
+
self.report["warnings"].append(
|
| 49 |
+
f"β οΈ {col}: {n_unique:,} unique values β Hashed to codes (category leak risk)"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# 4. Missing Target Leakage: Flag if missingness correlates with any column
|
| 53 |
+
missing_corr = df.isnull().corr()
|
| 54 |
+
high_corr = missing_corr[missing_corr.abs() > 0.9].stack().reset_index()
|
| 55 |
+
high_corr = high_corr[high_corr['level_0'] != high_corr['level_1']]
|
| 56 |
+
|
| 57 |
+
if not high_corr.empty:
|
| 58 |
+
for _, row in high_corr.iterrows():
|
| 59 |
+
self.report["warnings"].append(
|
| 60 |
+
f"β οΈ Missingness correlation: {row['level_0']} β {row['level_1']} (r={row[0]:.2f})"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# 5. Silent Failures: Detect constant columns (screw up scaling)
|
| 64 |
+
constant_cols = [col for col in df.columns if df[col].nunique() <= 1]
|
| 65 |
+
if constant_cols:
|
| 66 |
+
self.report["warnings"].append(f"β οΈ Constant columns (drop these): {constant_cols}")
|
| 67 |
+
|
| 68 |
+
# Final stats
|
| 69 |
+
end_mem = df.memory_usage(deep=True).sum() / 1024**2
|
| 70 |
+
self.report["stats"] = {
|
| 71 |
+
"Memory saved": f"{start_mem - end_mem:.1f} MB ({100*(1-end_mem/start_mem):.0f}%)",
|
| 72 |
+
"Rows": len(df),
|
| 73 |
+
"Columns": len(df.columns),
|
| 74 |
+
"Dtypes optimized": len([a for a in self.report["actions"] if "β" in a])
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
return df, self.report
|
| 78 |
+
|
| 79 |
+
def process_file(file_obj, target_col: str = "") -> Tuple[pd.DataFrame, Dict, str]:
|
| 80 |
+
"""Main function for Gradio"""
|
| 81 |
+
if file_obj is None:
|
| 82 |
+
return None, None, "Upload a CSV first"
|
| 83 |
+
|
| 84 |
+
df = pd.read_csv(file_obj.name)
|
| 85 |
+
preprocessor = DSPreprocessor()
|
| 86 |
+
|
| 87 |
+
# Optional target column for leakage check
|
| 88 |
+
if target_col and target_col in df.columns:
|
| 89 |
+
# Move target to end for clarity
|
| 90 |
+
df = df[[c for c in df.columns if c != target_col] + [target_col]]
|
| 91 |
+
|
| 92 |
+
cleaned_df, report = preprocessor.fit_transform(df)
|
| 93 |
+
|
| 94 |
+
# Create download link
|
| 95 |
+
csv_bytes = cleaned_df.to_csv(index=False).encode()
|
| 96 |
+
b64 = base64.b64encode(csv_bytes).decode()
|
| 97 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="cleaned_data.csv">Download Cleaned CSV</a>'
|
| 98 |
+
|
| 99 |
+
return cleaned_df, report, href
|
| 100 |
+
|
| 101 |
+
# UI (Gradio)
|
| 102 |
+
with gr.Blocks(title="DS Preprocessor Pro") as demo:
|
| 103 |
+
gr.Markdown("## π Data Science Preprocessor Pro\nUpload a messy CSV. Get back clean data + audit report.")
|
| 104 |
+
|
| 105 |
+
with gr.Row():
|
| 106 |
+
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
|
| 107 |
+
target_input = gr.Textbox(label="Target column (optional)", placeholder="e.g., price")
|
| 108 |
+
|
| 109 |
+
with gr.Row():
|
| 110 |
+
go_btn = gr.Button("π₯ Clean My Data", variant="primary", size="lg")
|
| 111 |
+
|
| 112 |
+
with gr.Tabs():
|
| 113 |
+
with gr.TabItem("Cleaned Data"):
|
| 114 |
+
data_output = gr.Dataframe()
|
| 115 |
+
with gr.TabItem("Audit Report"):
|
| 116 |
+
report_output = gr.JSON()
|
| 117 |
+
with gr.TabItem("Download"):
|
| 118 |
+
download_html = gr.HTML()
|
| 119 |
+
|
| 120 |
+
# Magic happens here
|
| 121 |
+
go_btn.click(
|
| 122 |
+
fn=process_file,
|
| 123 |
+
inputs=[file_input, target_input],
|
| 124 |
+
outputs=[data_output, report_output, download_html]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
gr.Examples(
|
| 128 |
+
examples=["sample_messy_data.csv"], # Create a sample file in your Space
|
| 129 |
+
inputs=[file_input]
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
demo.launch()
|