Spaces:
Paused
Paused
| import operator | |
| import warnings | |
| from dataclasses import dataclass | |
| from functools import reduce # Required in Python 3 | |
| from typing import Tuple, Optional, List | |
| from warnings import warn | |
| import torch | |
| import bitsandbytes.functional as F | |
| # math.prod not compatible with python < 3.8 | |
| def prod(iterable): | |
| return reduce(operator.mul, iterable, 1) | |
| tensor = torch.Tensor | |
| # The inverse transformation for the colTuring and colAmpere format were contributed by Alex Borzunov: | |
| # https://github.com/bigscience-workshop/petals/blob/main/src/petals/utils/linear8bitlt_patch.py | |
| """ | |
| This class pools outlier dimensions across layers. | |
| This is particularly important for small models where outlier features | |
| are less systematic and occur with low frequency. | |
| """ | |
| class GlobalOutlierPooler: | |
| _instance = None | |
| def __init__(self): | |
| raise RuntimeError("Call get_instance() instead") | |
| def initialize(self): | |
| self.outliers = set() | |
| self.model_dim = None | |
| def get_instance(cls): | |
| if cls._instance is None: | |
| cls._instance = cls.__new__(cls) | |
| cls._instance.initialize() | |
| return cls._instance | |
| def add_outliers(self, outlier_idx, feature_dim): | |
| if self.model_dim is None: | |
| self.model_dim = feature_dim | |
| if feature_dim != self.model_dim: | |
| return # we do not encode outliers for the 2nd FFN layer | |
| self.outliers.update(outlier_idx.tolist()) | |
| def get_current_outlier_idx(self): | |
| return torch.Tensor(list(self.outliers)).to(torch.int64) | |
| def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]): | |
| """ | |
| Compute a permutation of indices that invert the specified (tiled) matrix transformation | |
| :param transform_tile: a function that applies forward transform to a tensor of shape [dim1, dim2] | |
| :param tile_size: higher-level tile dimensions, i.e. (8, 32) for Turing and (32, 32) for Ampere | |
| :note: we assume that tile_transform applies to a cpu-based int8 tensor of shape tile_size | |
| :example: transform_tile function for the turing layout (bitsandbytes.functional as F) | |
| :returns: indices | |
| """ | |
| d1, d2 = tile_size | |
| assert 0 < d1 * d2 < 2**64 | |
| tile_indices = torch.arange(d1 * d2, dtype=torch.int64).view(d1, d2) | |
| # encode each position in tile as a tuple of <= 8 unique bytes | |
| permuted_tile_indices = torch.zeros_like(tile_indices) | |
| for i in range(8): | |
| # select i-th byte, apply transformation and trace where each index ended up | |
| ith_dim_indices = torch.div(tile_indices, 256**i, rounding_mode="trunc") % 256 | |
| sample_tile_i = (ith_dim_indices - 128).to(torch.int8).contiguous() | |
| assert torch.all(sample_tile_i.int() + 128 == ith_dim_indices), "int overflow" | |
| permuted_tile_i = transform_tile(sample_tile_i) | |
| ith_permuted_indices = permuted_tile_i.to(tile_indices.dtype) + 128 | |
| permuted_tile_indices += ith_permuted_indices * (256**i) | |
| if d1 * d2 < 256**i: | |
| break # if all indices fit in i bytes, stop early | |
| return permuted_tile_indices | |
| def undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor: | |
| """ | |
| Undo a tiled permutation such as turing or ampere layout | |
| :param permuted_tensor: torch tensor in a permuted layout | |
| :param tile_indices: reverse transformation indices, from get_inverse_transform_indices | |
| :return: contiguous row-major tensor | |
| """ | |
| (rows, cols), (tile_rows, tile_cols) = permuted_tensor.shape, tile_indices.shape | |
| assert rows % tile_rows == cols % tile_cols == 0, "tensor must contain a whole number of tiles" | |
| tensor = permuted_tensor.reshape(-1, tile_indices.numel()).t() | |
| outputs = torch.empty_like(tensor) # note: not using .index_copy because it was slower on cuda | |
| outputs[tile_indices.flatten()] = tensor | |
| outputs = outputs.reshape(tile_rows, tile_cols, cols // tile_cols, rows // tile_rows) | |
| outputs = outputs.permute(3, 0, 2, 1) # (rows // tile_rows, tile_rows), (cols // tile_cols, tile_cols) | |
| return outputs.reshape(rows, cols).contiguous() | |
| class MatMul8bit(torch.autograd.Function): | |
| def forward(ctx, A, B, out=None, quant_type="vector", precision=None): | |
| if precision is None: | |
| precision = [8, 8, 8] | |
| if precision[0] != 8: | |
| with torch.no_grad(): | |
| output = torch.matmul(A, B) | |
| else: | |
| if len(B.shape) == 2: | |
| dim = 0 | |
| else: | |
| dim = 1 | |
| qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type) | |
| qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type) | |
| iout = F.igemm(qA, qB) | |
| output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type) | |
| if A.requires_grad or B.requires_grad: | |
| ctx.save_for_backward(A, B) | |
| ctx.quant_type = quant_type | |
| ctx.precision = precision | |
| return output | |
| def backward(ctx, grad_output): | |
| A, B = ctx.saved_tensors | |
| quant_type = ctx.quant_type | |
| precision = ctx.precision | |
| grad_A = grad_B = None | |
| if B.requires_grad: | |
| if len(A.shape) == 3: | |
| dims = [0, 1] | |
| # bsi -> ibs | |
| permute_dim = [0, 2, 1] | |
| else: | |
| dims = [0] | |
| # bs -> sb | |
| permute_dim = [1, 0] | |
| if precision[1] != 8: | |
| with torch.no_grad(): | |
| grad_B = torch.matmul(A.permute(permute_dim), grad_output) | |
| else: | |
| if len(B.shape) == 2 and len(A.shape) == 3: | |
| grad_output = grad_output.contiguous() | |
| if not grad_output.is_contiguous(): | |
| grad_output.contiguous() | |
| qgrad_output, S1 = F.vectorwise_quant( | |
| grad_output.view(-1, grad_output.shape[2]), | |
| dim=0, | |
| quant_type=quant_type, | |
| ) | |
| if not A.is_contiguous(): | |
| A = A.contiguous() | |
| qA, S2 = F.vectorwise_quant( | |
| A.view(-1, A.shape[2]), dim=0, quant_type=quant_type | |
| ) | |
| igrad_B = F.igemm(qA.t(), qgrad_output) | |
| grad_B = F.vectorwise_mm_dequant( | |
| igrad_B, S2.t(), S1, grad_output.dtype, quant_type | |
| ) | |
| else: | |
| qgrad_output, S1 = F.vectorwise_quant( | |
| grad_output, dim=dims, quant_type=quant_type | |
| ) | |
| qA, S2 = F.vectorwise_quant( | |
| A, dim=dims, quant_type=quant_type | |
| ) | |
| igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output) | |
| grad_B = F.vectorwise_mm_dequant( | |
| igrad_B, | |
| S2.permute(permute_dim), | |
| S1, | |
| grad_output.dtype, | |
| quant_type, | |
| ) | |
| if A.requires_grad: | |
| if len(grad_output.shape) == 3: | |
| dims = [2] | |
| else: | |
| dims = [1] | |
| if len(B.shape) == 3: | |
| # bio -> boi | |
| permute_dim = [0, 2, 1] | |
| dim_B = dims | |
| else: | |
| # io -> oi | |
| permute_dim = [1, 0] | |
| dim_B = [1] | |
| if precision[2] != 8: | |
| with torch.no_grad(): | |
| grad_A = torch.matmul(grad_output, B.permute(permute_dim)) | |
| else: | |
| qgrad_output, S1 = F.vectorwise_quant( | |
| grad_output, dim=dims, quant_type=quant_type | |
| ) | |
| qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type) | |
| igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim)) | |
| grad_A = F.vectorwise_mm_dequant( | |
| igrad_A, | |
| S1, | |
| S3.permute(permute_dim), | |
| grad_output.dtype, | |
| quant_type, | |
| ) | |
| return grad_A, grad_B, None, None, None | |
| mm_cublas = MatMul8bit.apply | |
| bmm_cublas = MatMul8bit.apply | |
| matmul_cublas = MatMul8bit.apply | |
| def supports_igemmlt(device: torch.device) -> bool: | |
| """check if this device supports the optimized int8 kernel""" | |
| if torch.cuda.get_device_capability(device=device) < (7, 5): | |
| return False | |
| device_name = torch.cuda.get_device_name(device=device) | |
| nvidia16_models = ('GTX 1630', 'GTX 1650', 'GTX 1660') # https://en.wikipedia.org/wiki/GeForce_16_series | |
| if any(model_name in device_name for model_name in nvidia16_models): | |
| return False # these devices are technically cuda 7.5-capable, but they lack tensor cores | |
| return True | |
| def _get_tile_size(format): | |
| assert format in ( | |
| "col_turing", | |
| "col_ampere", | |
| ), f"please find this assert and manually enter tile size for {format}" | |
| return (8, 32) if format == "col_turing" else (32, 32) | |
| def get_tile_inds(format, device): | |
| transform = lambda x: F.transform(x.to(device), from_order="row", to_order=format)[0].to(x.device) | |
| with torch.no_grad(): | |
| return get_inverse_transform_indices(transform, _get_tile_size(format)).to(device) | |
| class MatmulLtState: | |
| _tile_indices: Optional[torch.Tensor] = None | |
| force_no_igemmlt: bool = False | |
| CB = None | |
| CxB = None | |
| SB = None | |
| SCB = None | |
| CxBt = None | |
| SBt = None | |
| CBt = None | |
| subB = None | |
| outlier_pool = None | |
| has_accumulated_gradients = False | |
| threshold = 0.0 | |
| idx = None | |
| is_training = True | |
| has_fp16_weights = True | |
| memory_efficient_backward = False | |
| use_pool = False | |
| formatB = F.get_special_format_str() | |
| def reset_grads(self): | |
| self.CB = None | |
| self.CxB = None | |
| self.SB = None | |
| self.SCB = None | |
| self.CxBt = None | |
| self.SBt = None | |
| self.CBt = None | |
| def tile_indices(self): | |
| if self._tile_indices is None: | |
| self._tile_indices = get_tile_inds(self.formatB, self.CxB.device) | |
| return self._tile_indices | |
| class MatMul8bitLt(torch.autograd.Function): | |
| # forward is the same, but we added the fallback for pre-turing GPUs | |
| # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") | |
| def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): | |
| using_igemmlt = supports_igemmlt(A.device) and not state.force_no_igemmlt | |
| # default of pytorch behavior if inputs are empty | |
| ctx.is_empty = False | |
| if prod(A.shape) == 0: | |
| ctx.is_empty = True | |
| ctx.A = A | |
| ctx.B = B | |
| ctx.bias = bias | |
| if A.shape[-1] == B.shape[0]: | |
| return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device) | |
| else: | |
| return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device) | |
| # 1. Quantize A | |
| # 2. Quantize B | |
| # 3. Matmul | |
| # 4. Mixed-precision decomposition matmul | |
| # 5. Save state | |
| formatB = state.formatB | |
| input_shape = A.shape | |
| if state.outlier_pool is None: | |
| state.outlier_pool = GlobalOutlierPooler.get_instance() | |
| # Cast A to fp16 | |
| if A.dtype != torch.float16: | |
| warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") | |
| # 1. Quantize A | |
| if len(A.shape) == 3: | |
| A = A.reshape(-1, A.shape[-1]) | |
| CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A.to(torch.float16), threshold=state.threshold) | |
| if state.threshold > 0.0 and coo_tensorA is not None: | |
| if state.has_fp16_weights: | |
| idx = torch.unique(coo_tensorA.colidx).long() | |
| CA[:, idx] = 0 | |
| CAt[:, idx] = 0 | |
| subA = A[:, idx] | |
| state.subB = B[:, idx].t().contiguous() | |
| state.idx = idx | |
| else: | |
| if state.CxB is None and using_igemmlt: | |
| # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions | |
| # we also need to convert it to the turing/ampere format | |
| state.CxB, state.SB = F.transform(state.CB, to_order=formatB) | |
| else: | |
| if not state.has_fp16_weights and state.CxB is None and using_igemmlt: | |
| state.CxB, state.SB = F.transform(state.CB, to_order=formatB) | |
| subA = None | |
| # 2. Quantize B | |
| if state.has_fp16_weights: | |
| has_grad = True if (getattr(B, "grad", None) is not None) else False | |
| is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) | |
| if is_transposed: | |
| B = B.contiguous() | |
| if (state.is_training and not has_grad) or state.CxB is None: | |
| state.reset_grads() | |
| ( | |
| CB, | |
| state.CBt, | |
| state.SCB, | |
| state.SCBt, | |
| coo_tensorB, | |
| ) = F.double_quant(B.to(torch.float16)) | |
| if using_igemmlt: | |
| state.CxB, state.SB = F.transform(CB, to_order=formatB) | |
| else: | |
| state.CB = CB | |
| else: | |
| has_grad = False | |
| if coo_tensorA is not None and not state.has_fp16_weights: | |
| # extract outliers | |
| outlier_idx = torch.unique(coo_tensorA.colidx) | |
| state.idx = outlier_idx | |
| # state.outlier_pool.add_outliers(outlier_idx, A.shape[-1]) | |
| # if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]: | |
| # # do not use pool for 2nd FFN layer | |
| # state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device) | |
| # else: | |
| # state.idx = outlier_idx | |
| if state.CxB is not None: | |
| outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int()) | |
| else: | |
| outliers = state.CB[:, state.idx.long()].clone() | |
| state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype) | |
| CA[:, state.idx.long()] = 0 | |
| CAt[:, state.idx.long()] = 0 | |
| subA = A[:, state.idx.long()] | |
| shapeB = state.SB[0] if state.SB else B.shape | |
| if len(input_shape) == 3: | |
| output_shape = (input_shape[0], input_shape[1], shapeB[0]) | |
| else: | |
| output_shape = (input_shape[0], shapeB[0]) | |
| # 3. Matmul | |
| if using_igemmlt: | |
| C32A, SA = F.transform(CA, "col32") | |
| out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) | |
| if bias is None or bias.dtype == torch.float16: | |
| # we apply the fused bias here | |
| output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias) | |
| output = output.to(A.dtype) | |
| else: # apply bias separately | |
| output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None) | |
| output = output.to(A.dtype).add_(bias) | |
| else: | |
| A_wo_outliers = A.clone() | |
| if state.idx is not None: | |
| A_wo_outliers[:, state.idx.long()] = 0 | |
| output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype)) | |
| output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0)) | |
| if bias is not None: | |
| output = output.add_(bias) | |
| # 4. Mixed-precision decomposition matmul | |
| if coo_tensorA is not None and subA is not None: | |
| output += torch.matmul(subA, state.subB) | |
| # 5. Save state | |
| ctx.state = state | |
| ctx.formatB = formatB | |
| ctx.grad_shape = input_shape | |
| ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype | |
| if any(ctx.needs_input_grad[:2]): | |
| ctx.tensors = (CAt, subA, A) | |
| ctx.tensor_states = (SCAt, state.idx) | |
| else: | |
| ctx.tensors = [None, None, A] | |
| ctx.tensor_states = (None, None) | |
| ctx.save_for_backward(None, None) | |
| clone_func = torch.clone if len(output_shape) == 3 else lambda x: x | |
| return clone_func(output.view(output_shape)) | |
| def backward(ctx, grad_output): | |
| if ctx.is_empty: | |
| bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias) | |
| return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None | |
| req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad | |
| CAt, subA, A = ctx.tensors | |
| SCAt, idx = ctx.tensor_states | |
| formatB = ctx.formatB | |
| state = ctx.state | |
| grad_A = grad_B = grad_bias = None | |
| if req_gradBias: | |
| # compute grad_bias first before changing grad_output dtype | |
| grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) | |
| # Cast grad_output to fp16 | |
| if len(grad_output.shape) == 3: | |
| grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() | |
| Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) | |
| if req_gradB: | |
| CxAt, SAt = F.transform(CAt, formatB, transpose=True) | |
| C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True) | |
| gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt) | |
| grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt) | |
| if state.threshold > 0.0 and subA is not None: | |
| grad_B[:, idx] += torch.matmul(grad_output.t(), subA) | |
| if req_gradA: | |
| if state.CBt is not None: | |
| C32grad, Sgrad = F.transform(Cgrad, "col32") | |
| if state.CxBt is None: | |
| state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True) | |
| gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) | |
| grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) | |
| elif state.CB is not None: | |
| CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0)) | |
| grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) | |
| elif state.CxB is not None: | |
| CB = ( | |
| undo_layout(state.CxB, state.tile_indices) | |
| .to(ctx.dtype_A) | |
| .mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0)) | |
| ) | |
| grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) | |
| else: | |
| raise Exception("State must contain either CBt or CB or CxB matrix for backward") | |
| return grad_A, grad_B, None, grad_bias, None | |
| class MatMul4Bit(torch.autograd.Function): | |
| # forward is the same, but we added the fallback for pre-turing GPUs | |
| # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") | |
| def forward(ctx, A, B, out=None, bias=None, state=None): | |
| # default of pytorch behavior if inputs are empty | |
| ctx.is_empty = False | |
| if prod(A.shape) == 0: | |
| ctx.is_empty = True | |
| ctx.A = A | |
| ctx.B = B | |
| ctx.bias = bias | |
| B_shape = state[1] | |
| if A.shape[-1] == B_shape[0]: | |
| return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) | |
| else: | |
| return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) | |
| # 1. Dequantize | |
| # 2. MatmulnN | |
| output = torch.nn.functional.linear(A, F.dequantize_4bit(B, state).to(A.dtype).t(), bias) | |
| # 3. Save state | |
| ctx.state = state | |
| ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype | |
| if any(ctx.needs_input_grad[:2]): | |
| ctx.tensors = (A, B) | |
| else: | |
| ctx.tensors = (None, None) | |
| return output | |
| def backward(ctx, grad_output): | |
| if ctx.is_empty: | |
| bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias) | |
| return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None | |
| req_gradA, _, _, req_gradBias, _= ctx.needs_input_grad | |
| A, B = ctx.tensors | |
| state = ctx.state | |
| grad_A, grad_B, grad_bias = None, None, None | |
| if req_gradBias: | |
| # compute grad_bias first before changing grad_output dtype | |
| grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) | |
| # not supported by PyTorch. TODO: create work-around | |
| #if req_gradB: grad_B = torch.matmul(grad_output.t(), A) | |
| if req_gradA: grad_A = torch.matmul(grad_output, F.dequantize_4bit(B, ctx.state).to(grad_output.dtype).t()) | |
| return grad_A, grad_B, None, grad_bias, None | |
| def matmul( | |
| A: tensor, | |
| B: tensor, | |
| out: tensor = None, | |
| state: MatmulLtState = None, | |
| threshold=0.0, | |
| bias=None | |
| ): | |
| state = state or MatmulLtState() | |
| if threshold > 0.0: | |
| state.threshold = threshold | |
| return MatMul8bitLt.apply(A, B, out, bias, state) | |
| def matmul_4bit(A: tensor, B: tensor, quant_state: List, out: tensor = None, bias=None): | |
| assert quant_state is not None | |
| if A.numel() == A.shape[-1] and A.requires_grad == False: | |
| absmax, shape, dtype, blocksize, compressed_stats, quant_type, data_type = quant_state | |
| if A.shape[-1] % blocksize != 0: | |
| warn(f'Some matrices hidden dimension is not a multiple of {blocksize} and efficient inference kernels are not supported for these (slow). Matrix input size found: {A.shape}') | |
| return MatMul4Bit.apply(A, B, out, bias, quant_state) | |
| else: | |
| out = F.gemv_4bit(A, B.t(), out, state=quant_state) | |
| if bias is not None: | |
| out += bias | |
| return out | |
| else: | |
| return MatMul4Bit.apply(A, B, out, bias, quant_state) | |