potsawee commited on
Commit
5dbc515
·
verified ·
1 Parent(s): 5f405b6

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +523 -0
app.py ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ HuggingFace Space Demo for TextSyncMimi
4
+ Speech Editing with Token-Level Embedding Swapping
5
+
6
+ This demo loads the model from HuggingFace Hub and allows:
7
+ - Generating speech with different voices using OpenAI TTS
8
+ - Swapping speech embeddings at specific token positions
9
+ - Real-time speech editing
10
+
11
+ Prerequisites:
12
+ - Set OPENAI_API_KEY in Space secrets
13
+ - Model will be loaded from HuggingFace Hub
14
+ """
15
+
16
+ import os
17
+ import json
18
+ import tempfile
19
+ import argparse
20
+ from typing import List, Tuple, Optional
21
+ from pathlib import Path
22
+
23
+ import numpy as np
24
+ import torch
25
+ import torch.nn as nn
26
+ import soundfile as sf
27
+ import gradio as gr
28
+ from openai import OpenAI
29
+ from transformers import (
30
+ AutoModel,
31
+ AutoFeatureExtractor,
32
+ AutoTokenizer,
33
+ MimiModel,
34
+ )
35
+
36
+
37
+ # Constants
38
+ SAMPLE_RATE = 24000
39
+ FRAME_RATE = 12.5
40
+ TTS_VOICES = ["alloy", "ash", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer", "verse"]
41
+ MAX_Z_TOKENS = 50
42
+ END_TOKEN_THRESHOLD = 0.5
43
+
44
+ # Global variables
45
+ model = None
46
+ mimi_model = None
47
+ tokenizer = None
48
+ feature_extractor = None
49
+ device = None
50
+ openai_client = None
51
+
52
+
53
+ def load_audio_to_inputs(feature_extractor, audio_path: str, sample_rate: int) -> torch.Tensor:
54
+ """Load audio file and convert to model inputs."""
55
+ import librosa
56
+ audio, sr = librosa.load(audio_path, sr=sample_rate, mono=True)
57
+ audio_inputs = feature_extractor(raw_audio=audio, return_tensors="pt", sampling_rate=sample_rate)
58
+ return audio_inputs.input_values
59
+
60
+
61
+ def initialize_models(model_id: str, tokenizer_id: str = "meta-llama/Llama-3.1-8B-Instruct", hf_token: Optional[str] = None):
62
+ """Initialize all models from HuggingFace Hub."""
63
+ global model, mimi_model, tokenizer, feature_extractor, device, openai_client
64
+
65
+ device = "cuda" if torch.cuda.is_available() else "cpu"
66
+ print(f"Using device: {device}")
67
+
68
+ print(f"Loading TextSyncMimi model from {model_id}...")
69
+ model = AutoModel.from_pretrained(
70
+ model_id,
71
+ trust_remote_code=True,
72
+ token=hf_token
73
+ )
74
+ model.to(device)
75
+ model.eval()
76
+
77
+ # Get mimi_model_id from config
78
+ mimi_model_id = model.config.mimi_model_id if hasattr(model.config, 'mimi_model_id') else "kyutai/mimi"
79
+
80
+ print("Loading Mimi model...")
81
+ mimi_model = MimiModel.from_pretrained(mimi_model_id, token=hf_token)
82
+ mimi_model.to(device)
83
+ mimi_model.eval()
84
+
85
+ print(f"Loading tokenizer from {tokenizer_id}...")
86
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, token=hf_token)
87
+ if tokenizer.pad_token is None:
88
+ tokenizer.pad_token = tokenizer.eos_token
89
+
90
+ print("Loading feature extractor...")
91
+ feature_extractor = AutoFeatureExtractor.from_pretrained(mimi_model_id, token=hf_token)
92
+
93
+ print("Initializing OpenAI client...")
94
+ openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
95
+
96
+ print("✅ All models loaded successfully!")
97
+
98
+
99
+ @torch.no_grad()
100
+ def compute_cross_attention_s(
101
+ model,
102
+ text_embeddings: torch.Tensor,
103
+ input_values: torch.Tensor,
104
+ device: str
105
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
106
+ """Compute projected text embeddings and cross-attended speech embeddings."""
107
+ audio_attention_mask = torch.ones(1, input_values.shape[-1], dtype=torch.bool, device=device)
108
+ text_attention_mask = torch.ones(1, text_embeddings.shape[1], dtype=torch.bool, device=device)
109
+
110
+ # Encode speech
111
+ speech_embeddings = model.encode_audio_to_representation(
112
+ input_values.to(device),
113
+ audio_attention_mask=audio_attention_mask,
114
+ ).transpose(1, 2)
115
+
116
+ # Project text
117
+ text_proj = model.text_proj(text_embeddings.to(device))
118
+
119
+ # Build attention masks
120
+ batch_size, text_seq_len = text_proj.shape[:2]
121
+ causal_mask = torch.tril(torch.ones(text_seq_len, text_seq_len, device=device, dtype=text_proj.dtype))
122
+ causal_mask = causal_mask.view(1, 1, text_seq_len, text_seq_len).expand(batch_size, -1, -1, -1)
123
+ pad_mask = text_attention_mask.view(batch_size, 1, 1, text_seq_len)
124
+ formatted_text_attention_mask = torch.where((causal_mask * pad_mask).bool(), 0.0, float("-inf"))
125
+
126
+ speech_seq_len = speech_embeddings.shape[1]
127
+ speech_mask = torch.ones(batch_size, speech_seq_len, dtype=torch.bool, device=device)
128
+ formatted_speech_attention_mask = torch.where(
129
+ speech_mask.view(batch_size, 1, 1, speech_seq_len), 0.0, float("-inf")
130
+ )
131
+
132
+ # Cross attention
133
+ cross_out = model.cross_attention_transformer(
134
+ hidden_states=text_proj,
135
+ encoder_hidden_states=speech_embeddings,
136
+ attention_mask=formatted_text_attention_mask,
137
+ encoder_attention_mask=formatted_speech_attention_mask,
138
+ alignment_chunk_sizes=None,
139
+ ).last_hidden_state
140
+
141
+ return text_proj, cross_out, text_attention_mask
142
+
143
+
144
+ @torch.no_grad()
145
+ def ar_generate_and_decode(
146
+ model,
147
+ mimi_model,
148
+ text_proj: torch.Tensor,
149
+ s_tokens: torch.Tensor,
150
+ text_attention_mask: torch.Tensor,
151
+ max_z_tokens: int,
152
+ end_token_threshold: float,
153
+ device: str
154
+ ) -> np.ndarray:
155
+ """Generate audio autoregressively and decode to waveform."""
156
+ batch_size, text_seq_len = text_proj.shape[:2]
157
+
158
+ text_speech_latent_emb = model.text_speech_latent_embed(torch.zeros(1, dtype=torch.long, device=device))
159
+ time_speech_start_emb = model.time_speech_start_embed(torch.zeros(1, dtype=torch.long, device=device))
160
+ time_speech_end_emb = model.time_speech_end_embed(torch.zeros(1, dtype=torch.long, device=device))
161
+
162
+ generated_z_tokens: List[torch.Tensor] = []
163
+
164
+ for b in range(batch_size):
165
+ if text_attention_mask is not None:
166
+ valid_text_len = int(text_attention_mask[b].sum().item())
167
+ else:
168
+ valid_text_len = text_seq_len
169
+
170
+ sequence: List[torch.Tensor] = [text_speech_latent_emb]
171
+
172
+ for i in range(valid_text_len):
173
+ t_i = text_proj[b, i:i+1]
174
+ s_i = s_tokens[b, i:i+1]
175
+
176
+ sequence.extend([t_i, s_i])
177
+ sequence.append(time_speech_start_emb)
178
+
179
+ z_count = 0
180
+ while z_count < max_z_tokens:
181
+ current_sequence = torch.cat(sequence, dim=0).unsqueeze(0)
182
+ ar_attention_mask = torch.ones(1, current_sequence.shape[1], dtype=torch.bool, device=device)
183
+
184
+ ar_outputs = model.ar_transformer(
185
+ hidden_states=current_sequence,
186
+ attention_mask=ar_attention_mask,
187
+ )
188
+ last_prediction = ar_outputs.last_hidden_state[0, -1:, :]
189
+
190
+ end_token_logit = model.end_token_classifier(last_prediction).squeeze(-1)
191
+ end_token_prob = torch.sigmoid(end_token_logit).item()
192
+
193
+ if end_token_prob >= end_token_threshold:
194
+ break
195
+ sequence.append(last_prediction)
196
+ generated_z_tokens.append(last_prediction.squeeze(0))
197
+ z_count += 1
198
+
199
+ sequence.append(time_speech_end_emb)
200
+
201
+ # Decode z tokens to audio
202
+ if len(generated_z_tokens) == 0:
203
+ audio_tensor = torch.zeros(1, 1, 1000, device=device)
204
+ else:
205
+ z_tokens_batch = torch.stack(generated_z_tokens, dim=0).unsqueeze(0)
206
+ embeddings_bct = z_tokens_batch.transpose(1, 2)
207
+ embeddings_upsampled = mimi_model.upsample(embeddings_bct)
208
+ decoder_outputs = mimi_model.decoder_transformer(embeddings_upsampled.transpose(1, 2), return_dict=True)
209
+ embeddings_after_dec = decoder_outputs.last_hidden_state.transpose(1, 2)
210
+ audio_tensor = mimi_model.decoder(embeddings_after_dec)
211
+
212
+ audio_numpy = audio_tensor.squeeze().detach().cpu().numpy()
213
+ if np.isnan(audio_numpy).any() or np.isinf(audio_numpy).any():
214
+ audio_numpy = np.nan_to_num(audio_numpy)
215
+ if audio_numpy.ndim > 1:
216
+ audio_numpy = audio_numpy.flatten()
217
+ return audio_numpy
218
+
219
+
220
+ def generate_tts_audio(text: str, voice: str, instructions: str = None) -> str:
221
+ """Generate TTS audio using OpenAI and return the file path."""
222
+ if not openai_client:
223
+ raise RuntimeError("OpenAI client not initialized")
224
+
225
+ if instructions and instructions.strip():
226
+ response = openai_client.audio.speech.create(
227
+ model="gpt-4o-mini-tts",
228
+ voice=voice,
229
+ input=text,
230
+ instructions=instructions.strip()
231
+ )
232
+ else:
233
+ response = openai_client.audio.speech.create(
234
+ model="tts-1",
235
+ voice=voice,
236
+ input=text
237
+ )
238
+
239
+ with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
240
+ response.stream_to_file(temp_file.name)
241
+ return temp_file.name
242
+
243
+
244
+ def process_inputs(transcript_text: str, voice1: str, voice2: str, instructions1: str = "", instructions2: str = ""):
245
+ """Process inputs and generate audio."""
246
+ if not all([model, mimi_model, tokenizer, feature_extractor, openai_client]):
247
+ return "Please initialize models first!", None, None, None, None, None, None, None
248
+
249
+ if not transcript_text.strip():
250
+ return "Please provide a transcript!", None, None, None, None, None, None, None
251
+
252
+ if not voice1 or not voice2:
253
+ return "Please select voices for both audio samples!", None, None, None, None, None, None, None
254
+
255
+ # Tokenize
256
+ tokens = tokenizer(transcript_text.strip(), return_tensors="pt", add_special_tokens=False)
257
+ text_token_ids_cpu = tokens.input_ids.squeeze(0).tolist()
258
+ text_token_strs = tokenizer.convert_ids_to_tokens(text_token_ids_cpu)
259
+ text_token_ids = tokens.input_ids.to(device)
260
+
261
+ token_display = ""
262
+ for i, tok in enumerate(text_token_strs):
263
+ token_display += f"Token {i}: {tok}\n"
264
+
265
+ # Generate TTS audio
266
+ print(f"Generating TTS audio with voice '{voice1}'...")
267
+ audio1_path = generate_tts_audio(transcript_text.strip(), voice1, instructions1)
268
+ print(f"Generating TTS audio with voice '{voice2}'...")
269
+ audio2_path = generate_tts_audio(transcript_text.strip(), voice2, instructions2)
270
+
271
+ # Load audio
272
+ input_values_utt1 = load_audio_to_inputs(feature_extractor, audio1_path, SAMPLE_RATE)
273
+ input_values_utt2 = load_audio_to_inputs(feature_extractor, audio2_path, SAMPLE_RATE)
274
+
275
+ # Get text embeddings using model's built-in text_token_embedding
276
+ with torch.no_grad():
277
+ text_embeddings = model.text_token_embedding(text_token_ids)
278
+
279
+ # Compute cross-attention embeddings
280
+ t1_proj, s1_cross, text_attention_mask = compute_cross_attention_s(
281
+ model, text_embeddings, input_values_utt1, device
282
+ )
283
+ _, s2_cross, _ = compute_cross_attention_s(
284
+ model, text_embeddings, input_values_utt2, device
285
+ )
286
+
287
+ # Generate baseline audio
288
+ baseline_audio = ar_generate_and_decode(
289
+ model=model,
290
+ mimi_model=mimi_model,
291
+ text_proj=t1_proj,
292
+ s_tokens=s1_cross,
293
+ text_attention_mask=text_attention_mask,
294
+ max_z_tokens=MAX_Z_TOKENS,
295
+ end_token_threshold=END_TOKEN_THRESHOLD,
296
+ device=device,
297
+ )
298
+
299
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
300
+ sf.write(f.name, baseline_audio, SAMPLE_RATE)
301
+ baseline_path = f.name
302
+
303
+ return (
304
+ "Processing completed successfully!",
305
+ token_display,
306
+ audio1_path,
307
+ audio2_path,
308
+ baseline_path,
309
+ json.dumps({
310
+ "t1_proj": t1_proj.cpu().numpy().tolist(),
311
+ "s1_cross": s1_cross.cpu().numpy().tolist(),
312
+ "s2_cross": s2_cross.cpu().numpy().tolist(),
313
+ "text_attention_mask": text_attention_mask.cpu().numpy().tolist(),
314
+ "num_tokens": len(text_token_strs)
315
+ }),
316
+ audio1_path,
317
+ audio2_path
318
+ )
319
+
320
+
321
+ def swap_embeddings(embeddings_json: str, swap_indices: str):
322
+ """Perform embedding swap at specified token indices."""
323
+ if not embeddings_json:
324
+ return "Please process inputs first!", None
325
+
326
+ if not swap_indices.strip():
327
+ return "Please specify token indices to swap (e.g., 0,2,5)!", None
328
+
329
+ # Parse stored embeddings
330
+ embeddings_data = json.loads(embeddings_json)
331
+ t1_proj = torch.tensor(embeddings_data["t1_proj"]).to(device)
332
+ s1_cross = torch.tensor(embeddings_data["s1_cross"]).to(device)
333
+ s2_cross = torch.tensor(embeddings_data["s2_cross"]).to(device)
334
+ text_attention_mask = torch.tensor(embeddings_data["text_attention_mask"]).to(device)
335
+ num_tokens = embeddings_data["num_tokens"]
336
+
337
+ # Parse indices
338
+ parts = [p.strip() for p in swap_indices.split(",")]
339
+ parsed = [int(p) for p in parts if p.isdigit()]
340
+
341
+ if len(parsed) == 0:
342
+ return "No valid indices provided! Use format: 0,2,5", None
343
+
344
+ valid_indices = [i for i in parsed if 0 <= i < num_tokens]
345
+ if len(valid_indices) == 0:
346
+ return f"All indices out of range! Valid range: 0-{num_tokens-1}", None
347
+
348
+ # Perform swap
349
+ s_swapped = s1_cross.clone()
350
+ for idx in valid_indices:
351
+ s_swapped[:, idx:idx+1, :] = s2_cross[:, idx:idx+1, :]
352
+
353
+ # Generate swapped audio
354
+ swapped_audio = ar_generate_and_decode(
355
+ model=model,
356
+ mimi_model=mimi_model,
357
+ text_proj=t1_proj,
358
+ s_tokens=s_swapped,
359
+ text_attention_mask=text_attention_mask,
360
+ max_z_tokens=MAX_Z_TOKENS,
361
+ end_token_threshold=END_TOKEN_THRESHOLD,
362
+ device=device,
363
+ )
364
+
365
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
366
+ sf.write(f.name, swapped_audio, SAMPLE_RATE)
367
+ swapped_path = f.name
368
+
369
+ return f"Successfully swapped embeddings at token indices: {valid_indices}", swapped_path
370
+
371
+
372
+ def create_gradio_interface():
373
+ """Create the Gradio interface."""
374
+ with gr.Blocks(title="TextSyncMimi Demo") as interface:
375
+ gr.Markdown("# TextSyncMimi - Standalone Demo")
376
+ gr.Markdown("Generate two voice renditions using OpenAI TTS, then swap speech embeddings at token positions.")
377
+ gr.Markdown("**This demo uses only the self-contained TextSyncMimi-v1 model code.**")
378
+
379
+ with gr.Accordion("Style Instruction Examples", open=False):
380
+ gr.Markdown("""
381
+ **Example Instructions:**
382
+ - *Emotional:* "Speak with excitement and joy", "Sound sad and melancholy"
383
+ - *Pace:* "Speak slowly and deliberately", "Talk quickly and energetically"
384
+ - *Character:* "Sound like a wise professor", "Speak like an excited child"
385
+ """)
386
+
387
+ with gr.Row():
388
+ with gr.Column():
389
+ gr.Markdown("## Text-to-Speech Configuration")
390
+ transcript_text = gr.Textbox(
391
+ label="Transcript Text",
392
+ placeholder="Enter text to synthesize...",
393
+ lines=3
394
+ )
395
+ with gr.Row():
396
+ voice1 = gr.Dropdown(
397
+ choices=TTS_VOICES,
398
+ label="Voice 1",
399
+ value="alloy"
400
+ )
401
+ voice2 = gr.Dropdown(
402
+ choices=TTS_VOICES,
403
+ label="Voice 2",
404
+ value="echo"
405
+ )
406
+ instructions1 = gr.Textbox(
407
+ label="Style Instructions for Voice 1",
408
+ placeholder="e.g., Speak slowly and calmly",
409
+ lines=2
410
+ )
411
+ instructions2 = gr.Textbox(
412
+ label="Style Instructions for Voice 2",
413
+ placeholder="e.g., Speak quickly with excitement",
414
+ lines=2
415
+ )
416
+ process_btn = gr.Button("Generate & Process", variant="primary")
417
+ process_status = gr.Textbox(label="Status", interactive=False)
418
+
419
+ with gr.Column():
420
+ gr.Markdown("## Tokenization")
421
+ tokens_display = gr.Textbox(
422
+ label="Tokens",
423
+ lines=16,
424
+ interactive=False
425
+ )
426
+
427
+ with gr.Row():
428
+ with gr.Column():
429
+ gr.Markdown("## Generated TTS Audio")
430
+ generated_audio1 = gr.Audio(label="Generated Audio 1")
431
+ generated_audio2 = gr.Audio(label="Generated Audio 2")
432
+
433
+ with gr.Column():
434
+ gr.Markdown("## Model Output")
435
+ baseline_audio = gr.Audio(label="Baseline Reconstruction")
436
+
437
+ gr.Markdown("### Embedding Swap")
438
+ swap_indices_input = gr.Textbox(
439
+ label="Token Indices to Swap",
440
+ placeholder="e.g., 0,2,5"
441
+ )
442
+ swap_btn = gr.Button("Perform Swap")
443
+ swap_status = gr.Textbox(label="Swap Status", interactive=False)
444
+ swapped_audio = gr.Audio(label="Swapped Result")
445
+
446
+ # Hidden states
447
+ embeddings_state = gr.State()
448
+ audio1_state = gr.State()
449
+ audio2_state = gr.State()
450
+
451
+ # Event handlers
452
+ process_btn.click(
453
+ fn=process_inputs,
454
+ inputs=[transcript_text, voice1, voice2, instructions1, instructions2],
455
+ outputs=[process_status, tokens_display, generated_audio1, generated_audio2,
456
+ baseline_audio, embeddings_state, audio1_state, audio2_state]
457
+ )
458
+
459
+ swap_btn.click(
460
+ fn=swap_embeddings,
461
+ inputs=[embeddings_state, swap_indices_input],
462
+ outputs=[swap_status, swapped_audio]
463
+ )
464
+
465
+ return interface
466
+
467
+
468
+ def main():
469
+ """Main function."""
470
+ parser = argparse.ArgumentParser(description="HuggingFace Space Demo for TextSyncMimi")
471
+ parser.add_argument(
472
+ "--model_id",
473
+ type=str,
474
+ default="potsawee/TextSyncMimi-v1",
475
+ help="HuggingFace model ID"
476
+ )
477
+ parser.add_argument(
478
+ "--tokenizer_id",
479
+ type=str,
480
+ default="meta-llama/Llama-3.1-8B-Instruct",
481
+ help="HuggingFace tokenizer ID"
482
+ )
483
+ parser.add_argument(
484
+ "--hf_token",
485
+ type=str,
486
+ default=None,
487
+ help="Hugging Face token (or set HF_TOKEN env var)"
488
+ )
489
+ parser.add_argument(
490
+ "--port",
491
+ type=int,
492
+ default=7860,
493
+ help="Port for Gradio app"
494
+ )
495
+ parser.add_argument(
496
+ "--share",
497
+ action="store_true",
498
+ help="Create public share link"
499
+ )
500
+ args = parser.parse_args()
501
+
502
+ # Check OpenAI API key
503
+ if not os.getenv("OPENAI_API_KEY"):
504
+ print("❌ Error: OPENAI_API_KEY environment variable is required!")
505
+ print("Set it: export OPENAI_API_KEY=your_key_here")
506
+ return
507
+
508
+ # Get HF token
509
+ hf_token = args.hf_token or os.getenv("HF_TOKEN")
510
+
511
+ # Initialize models
512
+ print(f"🚀 Initializing TextSyncMimi from HuggingFace Hub: {args.model_id}...")
513
+ initialize_models(args.model_id, args.tokenizer_id, hf_token)
514
+ print("🌐 Launching Gradio interface...")
515
+
516
+ # Launch
517
+ interface = create_gradio_interface()
518
+ interface.launch(server_port=args.port, share=args.share)
519
+
520
+
521
+ if __name__ == "__main__":
522
+ main()
523
+