Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import streamlit_analytics
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from transformers import ViTModel, ViTConfig
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import numpy as np
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import io
|
| 11 |
+
|
| 12 |
+
streamlit_analytics.start_tracking()
|
| 13 |
+
|
| 14 |
+
# Set page config for custom theme
|
| 15 |
+
st.set_page_config(page_title="Where will they look?", layout="wide")
|
| 16 |
+
|
| 17 |
+
# Custom color scheme for Streamlit
|
| 18 |
+
st.markdown("""
|
| 19 |
+
<style>
|
| 20 |
+
.stApp {
|
| 21 |
+
background-color: #2b3d4f;
|
| 22 |
+
color: #ffffff;
|
| 23 |
+
}
|
| 24 |
+
.stButton>button {
|
| 25 |
+
color: #2b3d4f;
|
| 26 |
+
background-color: #4fd1c5;
|
| 27 |
+
border-radius: 5px;
|
| 28 |
+
}
|
| 29 |
+
.stSlider>div>div>div>div {
|
| 30 |
+
background-color: #4fd1c5;
|
| 31 |
+
}
|
| 32 |
+
</style>
|
| 33 |
+
""", unsafe_allow_html=True)
|
| 34 |
+
|
| 35 |
+
# Set device preference
|
| 36 |
+
USE_GPU = False # Set to True to use GPU, False to use CPU
|
| 37 |
+
device = torch.device('cuda' if USE_GPU and torch.cuda.is_available() else 'cpu')
|
| 38 |
+
|
| 39 |
+
# Available color schemes
|
| 40 |
+
COLOR_SCHEMES = {
|
| 41 |
+
'Plasma': plt.cm.plasma,
|
| 42 |
+
'Viridis': plt.cm.viridis,
|
| 43 |
+
'Magma': plt.cm.magma,
|
| 44 |
+
'Inferno': plt.cm.inferno,
|
| 45 |
+
'Cividis': plt.cm.cividis,
|
| 46 |
+
'Spectral': plt.cm.Spectral,
|
| 47 |
+
'Coolwarm': plt.cm.coolwarm
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
# Load the pre-trained Vision Transformer model
|
| 51 |
+
@st.cache_resource
|
| 52 |
+
def load_model():
|
| 53 |
+
model_name = 'google/vit-base-patch16-384'
|
| 54 |
+
config = ViTConfig.from_pretrained(model_name, output_attentions=True, attn_implementation="eager")
|
| 55 |
+
model = ViTModel.from_pretrained(model_name, config=config)
|
| 56 |
+
model.eval()
|
| 57 |
+
return model.to(device)
|
| 58 |
+
|
| 59 |
+
model = load_model()
|
| 60 |
+
|
| 61 |
+
# Image preprocessing
|
| 62 |
+
preprocess = transforms.Compose([
|
| 63 |
+
transforms.Resize((384, 384)),
|
| 64 |
+
transforms.ToTensor(),
|
| 65 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 66 |
+
])
|
| 67 |
+
|
| 68 |
+
def get_attention_map(img):
|
| 69 |
+
# Preprocess the image
|
| 70 |
+
input_tensor = preprocess(img).unsqueeze(0).to(device)
|
| 71 |
+
|
| 72 |
+
# Get model output
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
outputs = model(input_tensor, output_attentions=True)
|
| 75 |
+
|
| 76 |
+
# Process attention maps
|
| 77 |
+
att_mat = torch.stack(outputs.attentions).squeeze(1)
|
| 78 |
+
att_mat = torch.mean(att_mat, dim=1)
|
| 79 |
+
|
| 80 |
+
# Add residual connections
|
| 81 |
+
residual_att = torch.eye(att_mat.size(-1)).unsqueeze(0).to(device)
|
| 82 |
+
aug_att_mat = att_mat + residual_att
|
| 83 |
+
aug_att_mat = aug_att_mat / aug_att_mat.sum(dim=-1).unsqueeze(-1)
|
| 84 |
+
|
| 85 |
+
# Recursively multiply the weight matrices
|
| 86 |
+
joint_attentions = torch.zeros(aug_att_mat.size()).to(device)
|
| 87 |
+
joint_attentions[0] = aug_att_mat[0]
|
| 88 |
+
for n in range(1, aug_att_mat.size(0)):
|
| 89 |
+
joint_attentions[n] = torch.matmul(aug_att_mat[n], joint_attentions[n-1])
|
| 90 |
+
|
| 91 |
+
# Get final attention map
|
| 92 |
+
v = joint_attentions[-1]
|
| 93 |
+
grid_size = int(np.sqrt(aug_att_mat.size(-1)))
|
| 94 |
+
mask = v[0, 1:].reshape(grid_size, grid_size).detach().cpu().numpy()
|
| 95 |
+
|
| 96 |
+
return mask
|
| 97 |
+
|
| 98 |
+
def overlay_attention_map(image, attention_map, overlay_strength, color_scheme):
|
| 99 |
+
# Resize attention map to match image size
|
| 100 |
+
attention_map = Image.fromarray(attention_map).resize(image.size, Image.BICUBIC)
|
| 101 |
+
attention_map = np.array(attention_map)
|
| 102 |
+
|
| 103 |
+
# Normalize attention map
|
| 104 |
+
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
|
| 105 |
+
|
| 106 |
+
# Apply selected color map
|
| 107 |
+
attention_map_color = color_scheme(attention_map)
|
| 108 |
+
|
| 109 |
+
# Convert image to RGBA
|
| 110 |
+
image_rgba = image.convert("RGBA")
|
| 111 |
+
image_array = np.array(image_rgba) / 255.0
|
| 112 |
+
|
| 113 |
+
# Overlay attention map on image with adjustable strength
|
| 114 |
+
overlayed_image = image_array * (1 - overlay_strength) + attention_map_color * overlay_strength
|
| 115 |
+
|
| 116 |
+
return Image.fromarray((overlayed_image * 255).astype(np.uint8))
|
| 117 |
+
|
| 118 |
+
st.title("Where will they look?")
|
| 119 |
+
|
| 120 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 121 |
+
|
| 122 |
+
if uploaded_file is not None:
|
| 123 |
+
image = Image.open(uploaded_file).convert('RGB')
|
| 124 |
+
|
| 125 |
+
st.success("Starting Prediction Process...")
|
| 126 |
+
attention_map = get_attention_map(image)
|
| 127 |
+
|
| 128 |
+
col1, col2 = st.columns(2)
|
| 129 |
+
|
| 130 |
+
with col1:
|
| 131 |
+
overlay_strength = st.slider("Heatmap Overlay Percentage", 0, 100, 50) / 100.0
|
| 132 |
+
|
| 133 |
+
with col2:
|
| 134 |
+
color_scheme_name = st.selectbox("Choose Heatmap Color Scheme", list(COLOR_SCHEMES.keys()))
|
| 135 |
+
|
| 136 |
+
color_scheme = COLOR_SCHEMES[color_scheme_name]
|
| 137 |
+
|
| 138 |
+
overlayed_image = overlay_attention_map(image, attention_map, overlay_strength, color_scheme)
|
| 139 |
+
|
| 140 |
+
st.image(overlayed_image, caption='Image with Heatmap Overlay', use_column_width=True)
|
| 141 |
+
|
| 142 |
+
# Option to download the overlayed image
|
| 143 |
+
buf = io.BytesIO()
|
| 144 |
+
overlayed_image.save(buf, format="PNG")
|
| 145 |
+
btn = st.download_button(
|
| 146 |
+
label="Download Image with Attention Map",
|
| 147 |
+
data=buf.getvalue(),
|
| 148 |
+
file_name="attention_map_overlay.png",
|
| 149 |
+
mime="image/png"
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
streamlit_analytics.stop_tracking()
|