File size: 9,598 Bytes
7e08bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import torch
from PIL import Image
from torchvision import transforms
import torchvision

import json

from torch.utils.data import Dataset
from torch.utils.data import DataLoader

class SquarePad:
    def __call__(self, image):
        max_wh = max(image.size)
        p_left, p_top = [(max_wh - s) // 2 for s in image.size]
        p_right, p_bottom = [max_wh - (s+pad) for s, pad in zip(image.size, [p_left, p_top])]
        padding = (p_left, p_top, p_right, p_bottom)
        return transforms.functional.pad(image, padding, padding_mode = 'edge')

class BaseDataset(Dataset):
    def __init__(self, img_size, dataset_path, inpainter):
        self.IMAGENET_MEAN = [0.485, 0.456, 0.406]
        self.IMAGENET_STD = [0.229, 0.224, 0.225]

        self.img_size = img_size
        self.dataset_path = dataset_path
        self.inpainter = inpainter

        self.json_path = os.path.join(dataset_path, 'DFDS_V2/DFDS_V2.0_2Percent.json')
        # self.json_path = os.path.join(dataset_path, 'DFDS_V2.0_2Percent.json')

        self.data = self.load_json()
        self.data_train = self.data[0:500]

        self.rgb_transform = transforms.Compose([
            SquarePad(),
            transforms.Resize((img_size, img_size), interpolation = transforms.InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize(mean = self.IMAGENET_MEAN, std = self.IMAGENET_STD)
            ])

    def load_json(self):
        with open(self.json_path, 'r') as file:
            data = json.load(file)
        return data

class TrainDataset(BaseDataset):
    def __init__(self, img_size, dataset_path):
        super().__init__(img_size = img_size, dataset_path = dataset_path, inpainter = None)

        self.gt_transform = transforms.Compose([
            SquarePad(),
            transforms.Resize((img_size, img_size), interpolation = transforms.InterpolationMode.BICUBIC),
            transforms.ToTensor()]
            )

        self.img_paths_pos, self.img_paths_neg, self.mask_paths_neg = self.load_dataset()

    def load_dataset(self):
        positive_imgs = [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train]

        negative_imgs = [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD1_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD1.5_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD2_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SDXL_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD3_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD3.5_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['kadinsky2.2_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['kadinsky3.1_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['FLUX_SHNELL_Inpaint'].lstrip('/')) for data in self.data_train] + \
                        [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['FLUX_DEV_FILL'].lstrip('/')) for data in self.data_train]

        negative_masks = [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
                         [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train]

        return positive_imgs, negative_imgs, negative_masks

    def __len__(self):
        return len(self.data_train) * 3

    def __getitem__(self, idx):
        img_path_pos, img_path_neg, gt_neg = self.img_paths_pos[idx], self.img_paths_neg[idx], self.mask_paths_neg[idx]

        img_pos = Image.open(img_path_pos.replace('/Open_V7/','')).convert('RGB')
        img_neg = Image.open(img_path_neg.replace('/Open_V7/','')).convert('RGB')

        rgb_pos = self.rgb_transform(img_pos)
        rgb_neg = self.rgb_transform(img_neg)

        gt_pos = torch.zeros([1, img_pos.size[1], img_pos.size[0]])
        gt_pos = torchvision.transforms.functional.to_pil_image(gt_pos)
        gt_pos = self.gt_transform(gt_pos)

        gt_neg = Image.open(gt_neg.replace('/Open_V7/','')).convert('L')
        gt_neg = self.gt_transform(gt_neg)
        gt_neg = torch.where(gt_neg > 0.5, 1., .0)

        return rgb_pos, gt_pos, rgb_neg, gt_neg

class TestDataset(BaseDataset):
    def __init__(self, img_size, dataset_path, inpainter):
        super().__init__(img_size = img_size, dataset_path = dataset_path, inpainter = inpainter)

        self.gt_transform = transforms.Compose([
            transforms.ToTensor()])

        self.img_paths, self.mask_paths, self.labels = self.load_dataset()

    def load_dataset(self):
        positive_imgs = [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data[500:600]]
        positive_masks = [None for data in self.data[500:600]]

        negative_imgs = [os.path.join(self.dataset_path, data['masks'][0]['inpainters'][self.inpainter].lstrip('/')) for data in self.data[600:700]]
        negative_masks = [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data[600:700]]

        labels = [0.0 for data in self.data[500:600]] + [1.0 for data in self.data[600:700]]

        return positive_imgs + negative_imgs, positive_masks + negative_masks, labels

    def __len__(self):
        return len(self.data[500:700])

    def __getitem__(self, idx):
        img_path, gt, label = self.img_paths[idx], self.mask_paths[idx], self.labels[idx]

        img = Image.open(img_path.replace('/Open_V7/','').replace('data/', 'data/DFDS_V2/')).convert('RGB')

        rgb = self.rgb_transform(img)

        if gt == None:
            gt = torch.zeros(
                [1, img.size[1], img.size[0]])
        else:
            gt = Image.open(gt.replace('/Open_V7/','').replace('data/', 'data/DFDS_V2/')).convert('L')
            gt = self.gt_transform(gt)
            gt = torch.where(gt > 0.5, 1., .0)

        return rgb, label, gt, img_path


def get_data_loader(split, img_size, batch_size, dataset_path, inpainter = None):
    if split == 'train':
        dataset = TrainDataset(img_size, dataset_path)
        data_loader = DataLoader(dataset = dataset, batch_size = batch_size, shuffle = True, num_workers = 8, drop_last = True, pin_memory = False)

    elif split == 'test':
        dataset = TestDataset(img_size, dataset_path, inpainter)
        data_loader = DataLoader(dataset = dataset, batch_size = batch_size, shuffle = False, num_workers = 8, drop_last = False, pin_memory = False)

    return data_loader