arcanoXIII commited on
Commit
c077072
·
verified ·
1 Parent(s): efa025e

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +62 -19
  2. requirements.txt +6 -5
app.py CHANGED
@@ -97,17 +97,27 @@ def detect_manipulation(image):
97
 
98
  heatmap = segmentation_map.cpu().detach().numpy()
99
 
100
- # Create visualization
101
- fig, ax = plt.subplots(figsize=(10, 10))
 
 
 
 
 
 
102
  ax.imshow(heatmap, cmap='jet')
103
  ax.axis('off')
104
- plt.tight_layout(pad=0)
105
 
106
  # Convert to numpy array
107
  buf = io.BytesIO()
108
- plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=150)
109
  buf.seek(0)
110
  result_image = Image.open(buf)
 
 
 
 
 
111
  result_array = np.array(result_image)
112
  plt.close(fig)
113
 
@@ -126,25 +136,58 @@ custom_css = """
126
  background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
127
  -webkit-background-clip: text;
128
  -webkit-text-fill-color: transparent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  }
130
  """
131
 
132
- # Create interface using Gradio 3.x syntax
133
- demo = gr.Interface(
134
- fn=detect_manipulation,
135
- inputs=gr.Image(label="Upload Image"),
136
- outputs=gr.Image(label="Manipulation Heatmap"),
137
- title="🎯 RADAR - Image Manipulation Detection",
138
- description="""
139
- **ReliAble iDentification of inpainted AReas**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
- Upload an image to detect and localize regions that have been manipulated using
142
- diffusion-based inpainting models. The output shows a heatmap where red areas
143
- indicate detected manipulations.
144
- """,
145
- css=custom_css,
146
- allow_flagging="never"
147
- )
148
 
149
  # Launch
150
  if __name__ == "__main__":
 
97
 
98
  heatmap = segmentation_map.cpu().detach().numpy()
99
 
100
+ # Create visualization with exact size
101
+ # Calculate figure size to match image dimensions
102
+ dpi = 100
103
+ fig_height = original_size[1] / dpi
104
+ fig_width = original_size[0] / dpi
105
+
106
+ fig = plt.figure(figsize=(fig_width, fig_height), dpi=dpi)
107
+ ax = fig.add_axes([0, 0, 1, 1]) # No margins
108
  ax.imshow(heatmap, cmap='jet')
109
  ax.axis('off')
 
110
 
111
  # Convert to numpy array
112
  buf = io.BytesIO()
113
+ plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi)
114
  buf.seek(0)
115
  result_image = Image.open(buf)
116
+
117
+ # Ensure exact size match by resizing if needed
118
+ if result_image.size != original_size:
119
+ result_image = result_image.resize(original_size, Image.LANCZOS)
120
+
121
  result_array = np.array(result_image)
122
  plt.close(fig)
123
 
 
136
  background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
137
  -webkit-background-clip: text;
138
  -webkit-text-fill-color: transparent;
139
+ background-clip: text;
140
+ }
141
+ #subtitle {
142
+ text-align: center;
143
+ font-size: 1.2em;
144
+ color: #666;
145
+ margin-bottom: 1em;
146
+ }
147
+ #info {
148
+ background: #e8f4fd;
149
+ border-left: 4px solid #2196F3;
150
+ padding: 15px;
151
+ border-radius: 5px;
152
+ margin-bottom: 20px;
153
+ color: #1976D2;
154
  }
155
  """
156
 
157
+ # Create interface using Gradio 4.x Blocks
158
+ with gr.Blocks(css=custom_css, title="RADAR - Image Manipulation Detection") as demo:
159
+ gr.HTML('<h1 id="title">🎯 RADAR</h1>')
160
+ gr.HTML('<p id="subtitle">ReliAble iDentification of inpainted AReas</p>')
161
+
162
+ gr.HTML('''
163
+ <div id="info">
164
+ <strong>ℹ️ About RADAR:</strong> Upload an image to detect and localize regions
165
+ that have been manipulated using diffusion-based inpainting models.
166
+ The output shows a heatmap where red areas indicate detected manipulations.
167
+ </div>
168
+ ''')
169
+
170
+ with gr.Row():
171
+ with gr.Column():
172
+ input_image = gr.Image(label="Upload Image", type="numpy")
173
+ with gr.Column():
174
+ output_image = gr.Image(label="Manipulation Heatmap", type="numpy")
175
+
176
+ submit_btn = gr.Button("🔍 Detect Manipulations", variant="primary")
177
+
178
+ # Connect the button
179
+ submit_btn.click(
180
+ fn=detect_manipulation,
181
+ inputs=input_image,
182
+ outputs=output_image
183
+ )
184
 
185
+ # Also trigger on image upload
186
+ input_image.change(
187
+ fn=detect_manipulation,
188
+ inputs=input_image,
189
+ outputs=output_image
190
+ )
 
191
 
192
  # Launch
193
  if __name__ == "__main__":
requirements.txt CHANGED
@@ -1,7 +1,8 @@
1
- gradio==3.50.2
2
- matplotlib
3
- numpy
4
- Pillow
5
  torch
6
  torchvision
7
- transformers
 
 
 
 
1
+ gradio==4.20.0
2
+ gradio-client==0.10.1
 
 
3
  torch
4
  torchvision
5
+ transformers
6
+ pillow
7
+ matplotlib
8
+ numpy