Nava-Infrence / app.py
rahul7star's picture
Update app.py
c18c42d verified
# app.py
import gradio as gr
import torch
import soundfile as sf
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from snac import SNAC
# -----------------------------
# CONFIG
# -----------------------------
MODEL_NAME = "rahul7star/nava1.0"
LORA_NAME = "rahul7star/nava-audio"
SEQ_LEN = 240000
TARGET_SR = 240000
OUT_ROOT = Path("/tmp/data")
OUT_ROOT.mkdir(parents=True, exist_ok=True)
DEFAULT_TEXT = (
"राजनीतिज्ञों ने कहा कि उन्होंने निर्णायक मत को अनावश्यक रूप से "
"निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी"
)
# -----------------------------
# GENERATE AUDIO (LoRA)
# -----------------------------
def generate_audio_cpu_lora(text: str):
logs = []
try:
DEVICE_CPU = "cpu"
print(text)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map={"": DEVICE_CPU},
torch_dtype=torch.float32,
trust_remote_code=True
)
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": DEVICE_CPU})
model.eval()
soh_token = tokenizer.decode([128259])
eoh_token = tokenizer.decode([128260])
soa_token = tokenizer.decode([128261])
sos_token = tokenizer.decode([128257])
eot_token = tokenizer.decode([128009])
bos_token = tokenizer.bos_token
prompt = soh_token + bos_token + text + eot_token + eoh_token + soa_token + sos_token
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE_CPU)
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=SEQ_LEN,
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
eos_token_id=128258,
pad_token_id=tokenizer.pad_token_id
)
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
snac_min, snac_max = 128266, 156937
eos_id = 128258
try:
eos_idx = generated_ids.index(eos_id)
except ValueError:
eos_idx = len(generated_ids)
snac_tokens = [t for t in generated_ids[:eos_idx] if snac_min <= t <= snac_max]
l1, l2, l3 = [], [], []
frames = len(snac_tokens) // 7
snac_tokens = snac_tokens[:frames*7]
for i in range(frames):
slots = snac_tokens[i*7:(i+1)*7]
l1.append((slots[0]-128266)%4096)
l2.extend([(slots[1]-128266)%4096, (slots[4]-128266)%4096])
l3.extend([(slots[2]-128266)%4096, (slots[3]-128266)%4096, (slots[5]-128266)%4096, (slots[6]-128266)%4096])
snac_model = SNAC.from_pretrained("rahul7star/nava-snac").eval().to(DEVICE_CPU)
codes_tensor = [torch.tensor(level, dtype=torch.long, device=DEVICE_CPU).unsqueeze(0) for level in [l1,l2,l3]]
with torch.inference_mode():
z_q = snac_model.quantizer.from_codes(codes_tensor)
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
if len(audio) > 2048:
audio = audio[2048:]
audio_path = OUT_ROOT / "tts_output_cpu_lora.wav"
sf.write(audio_path, audio, TARGET_SR)
return str(audio_path), str(audio_path), "\n".join(logs)
except Exception as e:
import traceback
logs.append(f"[❌] CPU LoRA TTS error: {e}\n{traceback.format_exc()}")
print(e)
return None, None, "\n".join(logs)
# -----------------------------
# GRADIO UI
# -----------------------------
with gr.Blocks() as demo:
gr.Markdown("# Maya LoRA TTS (CPU)- 10 mins gen time else switch to GPU ")
gr.Markdown("# Full Credit to Maya Team members ")
# Input text
input_text = gr.Textbox(label="Enter text", lines=2, value=DEFAULT_TEXT)
# Generate button
run_button = gr.Button("🔊 Generate Audio")
# Outputs
audio_output = gr.Audio(label="Play Generated Audio", type="filepath")
download_output = gr.File(label="Download Audio")
logs_output = gr.Textbox(label="Logs", lines=12)
run_button.click(
fn=generate_audio_cpu_lora,
inputs=[input_text],
outputs=[audio_output, download_output, logs_output]
)
# -----------------------------
# Example section
# -----------------------------
gr.Markdown("### Example")
example_text = DEFAULT_TEXT
example_audio_path = "audio.wav"
gr.Textbox(label="Example Text", value=example_text, lines=2, interactive=False)
gr.Audio(label="Example Audio", value=example_audio_path, type="filepath", interactive=False)
if __name__ == "__main__":
demo.launch()