Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
+
from peft import PeftModel, get_peft_model, LoraConfig, TaskType
|
| 8 |
+
from snac import SNAC
|
| 9 |
+
|
| 10 |
+
# -----------------------------
|
| 11 |
+
# CONFIG
|
| 12 |
+
# -----------------------------
|
| 13 |
+
MODEL_NAME = "rahul7star/nava1.0" # Base Maya model
|
| 14 |
+
LORA_NAME = "rahul7star/nava-audio" # LoRA adapter
|
| 15 |
+
SEQ_LEN = 2048
|
| 16 |
+
TARGET_SR = 24000
|
| 17 |
+
OUT_ROOT = Path("/tmp/data")
|
| 18 |
+
OUT_ROOT.mkdir(parents=True, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
# -----------------------------
|
| 21 |
+
# GENERATE AUDIO (LoRA)
|
| 22 |
+
# -----------------------------
|
| 23 |
+
def generate_audio_cpu_lora(text: str):
|
| 24 |
+
logs = []
|
| 25 |
+
try:
|
| 26 |
+
DEVICE_CPU = "cpu"
|
| 27 |
+
|
| 28 |
+
# Load tokenizer and base model
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 30 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
MODEL_NAME,
|
| 32 |
+
device_map={"": DEVICE_CPU},
|
| 33 |
+
torch_dtype=torch.float32,
|
| 34 |
+
trust_remote_code=True
|
| 35 |
+
)
|
| 36 |
+
logs.append("β
Loaded base Maya model")
|
| 37 |
+
|
| 38 |
+
# Load LoRA adapter from HF Hub
|
| 39 |
+
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": DEVICE_CPU})
|
| 40 |
+
model.eval()
|
| 41 |
+
logs.append(f"β
Applied LoRA adapter from {LORA_NAME}")
|
| 42 |
+
|
| 43 |
+
# Build prompt: just text prompt
|
| 44 |
+
soh_token = tokenizer.decode([128259])
|
| 45 |
+
eoh_token = tokenizer.decode([128260])
|
| 46 |
+
soa_token = tokenizer.decode([128261])
|
| 47 |
+
sos_token = tokenizer.decode([128257])
|
| 48 |
+
eot_token = tokenizer.decode([128009])
|
| 49 |
+
bos_token = tokenizer.bos_token
|
| 50 |
+
prompt = soh_token + bos_token + text + eot_token + eoh_token + soa_token + sos_token
|
| 51 |
+
|
| 52 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE_CPU)
|
| 53 |
+
|
| 54 |
+
# Generate tokens
|
| 55 |
+
with torch.inference_mode():
|
| 56 |
+
outputs = model.generate(
|
| 57 |
+
**inputs,
|
| 58 |
+
max_new_tokens=SEQ_LEN,
|
| 59 |
+
temperature=0.4,
|
| 60 |
+
top_p=0.9,
|
| 61 |
+
repetition_penalty=1.1,
|
| 62 |
+
do_sample=True,
|
| 63 |
+
eos_token_id=128258,
|
| 64 |
+
pad_token_id=tokenizer.pad_token_id
|
| 65 |
+
)
|
| 66 |
+
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 67 |
+
logs.append(f"β
Generated {len(generated_ids)} token IDs")
|
| 68 |
+
|
| 69 |
+
# Extract SNAC codes
|
| 70 |
+
snac_min, snac_max = 128266, 156937
|
| 71 |
+
eos_id = 128258
|
| 72 |
+
try:
|
| 73 |
+
eos_idx = generated_ids.index(eos_id)
|
| 74 |
+
except ValueError:
|
| 75 |
+
eos_idx = len(generated_ids)
|
| 76 |
+
snac_tokens = [t for t in generated_ids[:eos_idx] if snac_min <= t <= snac_max]
|
| 77 |
+
|
| 78 |
+
# Unpack 7-token SNAC frames
|
| 79 |
+
l1, l2, l3 = [], [], []
|
| 80 |
+
frames = len(snac_tokens) // 7
|
| 81 |
+
snac_tokens = snac_tokens[:frames*7]
|
| 82 |
+
for i in range(frames):
|
| 83 |
+
slots = snac_tokens[i*7:(i+1)*7]
|
| 84 |
+
l1.append((slots[0]-128266)%4096)
|
| 85 |
+
l2.extend([(slots[1]-128266)%4096, (slots[4]-128266)%4096])
|
| 86 |
+
l3.extend([(slots[2]-128266)%4096, (slots[3]-128266)%4096, (slots[5]-128266)%4096, (slots[6]-128266)%4096])
|
| 87 |
+
logs.append(f"β
Unpacked to {len(l1)} L1 frames, {len(l2)} L2 codes, {len(l3)} L3 codes")
|
| 88 |
+
|
| 89 |
+
# SNAC decoder
|
| 90 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(DEVICE_CPU)
|
| 91 |
+
codes_tensor = [torch.tensor(level, dtype=torch.long, device=DEVICE_CPU).unsqueeze(0) for level in [l1,l2,l3]]
|
| 92 |
+
with torch.inference_mode():
|
| 93 |
+
z_q = snac_model.quantizer.from_codes(codes_tensor)
|
| 94 |
+
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
|
| 95 |
+
if len(audio) > 2048:
|
| 96 |
+
audio = audio[2048:]
|
| 97 |
+
|
| 98 |
+
audio_path = OUT_ROOT / "tts_output_cpu_lora.wav"
|
| 99 |
+
sf.write(audio_path, audio, TARGET_SR)
|
| 100 |
+
logs.append(f"β
Audio saved: {audio_path}, duration: {len(audio)/TARGET_SR:.2f}s")
|
| 101 |
+
|
| 102 |
+
return str(audio_path), "\n".join(logs)
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
import traceback
|
| 106 |
+
logs.append(f"[β] CPU LoRA TTS error: {e}\n{traceback.format_exc()}")
|
| 107 |
+
return None, "\n".join(logs)
|
| 108 |
+
|
| 109 |
+
# -----------------------------
|
| 110 |
+
# GRADIO UI
|
| 111 |
+
# -----------------------------
|
| 112 |
+
with gr.Blocks() as demo:
|
| 113 |
+
gr.Markdown("# Maya LoRA TTS (CPU)")
|
| 114 |
+
input_text = gr.Textbox(label="Enter text", lines=2, placeholder="Type Hindi text here...")
|
| 115 |
+
run_button = gr.Button("π Generate Audio")
|
| 116 |
+
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
| 117 |
+
logs_output = gr.Textbox(label="Logs", lines=12)
|
| 118 |
+
|
| 119 |
+
run_button.click(
|
| 120 |
+
fn=generate_audio_cpu_lora,
|
| 121 |
+
inputs=[input_text],
|
| 122 |
+
outputs=[audio_output, logs_output]
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
demo.launch()
|