rahul7star commited on
Commit
49266ed
Β·
verified Β·
1 Parent(s): 5d6d786

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import gradio as gr
3
+ import torch
4
+ import soundfile as sf
5
+ from pathlib import Path
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
+ from peft import PeftModel, get_peft_model, LoraConfig, TaskType
8
+ from snac import SNAC
9
+
10
+ # -----------------------------
11
+ # CONFIG
12
+ # -----------------------------
13
+ MODEL_NAME = "rahul7star/nava1.0" # Base Maya model
14
+ LORA_NAME = "rahul7star/nava-audio" # LoRA adapter
15
+ SEQ_LEN = 2048
16
+ TARGET_SR = 24000
17
+ OUT_ROOT = Path("/tmp/data")
18
+ OUT_ROOT.mkdir(parents=True, exist_ok=True)
19
+
20
+ # -----------------------------
21
+ # GENERATE AUDIO (LoRA)
22
+ # -----------------------------
23
+ def generate_audio_cpu_lora(text: str):
24
+ logs = []
25
+ try:
26
+ DEVICE_CPU = "cpu"
27
+
28
+ # Load tokenizer and base model
29
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
30
+ base_model = AutoModelForCausalLM.from_pretrained(
31
+ MODEL_NAME,
32
+ device_map={"": DEVICE_CPU},
33
+ torch_dtype=torch.float32,
34
+ trust_remote_code=True
35
+ )
36
+ logs.append("βœ… Loaded base Maya model")
37
+
38
+ # Load LoRA adapter from HF Hub
39
+ model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": DEVICE_CPU})
40
+ model.eval()
41
+ logs.append(f"βœ… Applied LoRA adapter from {LORA_NAME}")
42
+
43
+ # Build prompt: just text prompt
44
+ soh_token = tokenizer.decode([128259])
45
+ eoh_token = tokenizer.decode([128260])
46
+ soa_token = tokenizer.decode([128261])
47
+ sos_token = tokenizer.decode([128257])
48
+ eot_token = tokenizer.decode([128009])
49
+ bos_token = tokenizer.bos_token
50
+ prompt = soh_token + bos_token + text + eot_token + eoh_token + soa_token + sos_token
51
+
52
+ inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE_CPU)
53
+
54
+ # Generate tokens
55
+ with torch.inference_mode():
56
+ outputs = model.generate(
57
+ **inputs,
58
+ max_new_tokens=SEQ_LEN,
59
+ temperature=0.4,
60
+ top_p=0.9,
61
+ repetition_penalty=1.1,
62
+ do_sample=True,
63
+ eos_token_id=128258,
64
+ pad_token_id=tokenizer.pad_token_id
65
+ )
66
+ generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
67
+ logs.append(f"βœ… Generated {len(generated_ids)} token IDs")
68
+
69
+ # Extract SNAC codes
70
+ snac_min, snac_max = 128266, 156937
71
+ eos_id = 128258
72
+ try:
73
+ eos_idx = generated_ids.index(eos_id)
74
+ except ValueError:
75
+ eos_idx = len(generated_ids)
76
+ snac_tokens = [t for t in generated_ids[:eos_idx] if snac_min <= t <= snac_max]
77
+
78
+ # Unpack 7-token SNAC frames
79
+ l1, l2, l3 = [], [], []
80
+ frames = len(snac_tokens) // 7
81
+ snac_tokens = snac_tokens[:frames*7]
82
+ for i in range(frames):
83
+ slots = snac_tokens[i*7:(i+1)*7]
84
+ l1.append((slots[0]-128266)%4096)
85
+ l2.extend([(slots[1]-128266)%4096, (slots[4]-128266)%4096])
86
+ l3.extend([(slots[2]-128266)%4096, (slots[3]-128266)%4096, (slots[5]-128266)%4096, (slots[6]-128266)%4096])
87
+ logs.append(f"βœ… Unpacked to {len(l1)} L1 frames, {len(l2)} L2 codes, {len(l3)} L3 codes")
88
+
89
+ # SNAC decoder
90
+ snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(DEVICE_CPU)
91
+ codes_tensor = [torch.tensor(level, dtype=torch.long, device=DEVICE_CPU).unsqueeze(0) for level in [l1,l2,l3]]
92
+ with torch.inference_mode():
93
+ z_q = snac_model.quantizer.from_codes(codes_tensor)
94
+ audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
95
+ if len(audio) > 2048:
96
+ audio = audio[2048:]
97
+
98
+ audio_path = OUT_ROOT / "tts_output_cpu_lora.wav"
99
+ sf.write(audio_path, audio, TARGET_SR)
100
+ logs.append(f"βœ… Audio saved: {audio_path}, duration: {len(audio)/TARGET_SR:.2f}s")
101
+
102
+ return str(audio_path), "\n".join(logs)
103
+
104
+ except Exception as e:
105
+ import traceback
106
+ logs.append(f"[❌] CPU LoRA TTS error: {e}\n{traceback.format_exc()}")
107
+ return None, "\n".join(logs)
108
+
109
+ # -----------------------------
110
+ # GRADIO UI
111
+ # -----------------------------
112
+ with gr.Blocks() as demo:
113
+ gr.Markdown("# Maya LoRA TTS (CPU)")
114
+ input_text = gr.Textbox(label="Enter text", lines=2, placeholder="Type Hindi text here...")
115
+ run_button = gr.Button("πŸ”Š Generate Audio")
116
+ audio_output = gr.Audio(label="Generated Audio", type="filepath")
117
+ logs_output = gr.Textbox(label="Logs", lines=12)
118
+
119
+ run_button.click(
120
+ fn=generate_audio_cpu_lora,
121
+ inputs=[input_text],
122
+ outputs=[audio_output, logs_output]
123
+ )
124
+
125
+ if __name__ == "__main__":
126
+ demo.launch()