Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,8 +29,9 @@ def generate_audio_cpu_lora(text: str):
|
|
| 29 |
logs = []
|
| 30 |
try:
|
| 31 |
DEVICE_CPU = "cpu"
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 35 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
MODEL_NAME,
|
|
@@ -38,14 +39,14 @@ def generate_audio_cpu_lora(text: str):
|
|
| 38 |
torch_dtype=torch.float32,
|
| 39 |
trust_remote_code=True
|
| 40 |
)
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": DEVICE_CPU})
|
| 45 |
model.eval()
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
soh_token = tokenizer.decode([128259])
|
| 50 |
eoh_token = tokenizer.decode([128260])
|
| 51 |
soa_token = tokenizer.decode([128261])
|
|
@@ -56,7 +57,7 @@ def generate_audio_cpu_lora(text: str):
|
|
| 56 |
|
| 57 |
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE_CPU)
|
| 58 |
|
| 59 |
-
|
| 60 |
with torch.inference_mode():
|
| 61 |
outputs = model.generate(
|
| 62 |
**inputs,
|
|
@@ -69,9 +70,9 @@ def generate_audio_cpu_lora(text: str):
|
|
| 69 |
pad_token_id=tokenizer.pad_token_id
|
| 70 |
)
|
| 71 |
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
snac_min, snac_max = 128266, 156937
|
| 76 |
eos_id = 128258
|
| 77 |
try:
|
|
@@ -80,7 +81,7 @@ def generate_audio_cpu_lora(text: str):
|
|
| 80 |
eos_idx = len(generated_ids)
|
| 81 |
snac_tokens = [t for t in generated_ids[:eos_idx] if snac_min <= t <= snac_max]
|
| 82 |
|
| 83 |
-
|
| 84 |
l1, l2, l3 = [], [], []
|
| 85 |
frames = len(snac_tokens) // 7
|
| 86 |
snac_tokens = snac_tokens[:frames*7]
|
|
@@ -89,9 +90,8 @@ def generate_audio_cpu_lora(text: str):
|
|
| 89 |
l1.append((slots[0]-128266)%4096)
|
| 90 |
l2.extend([(slots[1]-128266)%4096, (slots[4]-128266)%4096])
|
| 91 |
l3.extend([(slots[2]-128266)%4096, (slots[3]-128266)%4096, (slots[5]-128266)%4096, (slots[6]-128266)%4096])
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# SNAC decoder
|
| 95 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(DEVICE_CPU)
|
| 96 |
codes_tensor = [torch.tensor(level, dtype=torch.long, device=DEVICE_CPU).unsqueeze(0) for level in [l1,l2,l3]]
|
| 97 |
with torch.inference_mode():
|
|
@@ -102,7 +102,7 @@ def generate_audio_cpu_lora(text: str):
|
|
| 102 |
|
| 103 |
audio_path = OUT_ROOT / "tts_output_cpu_lora.wav"
|
| 104 |
sf.write(audio_path, audio, TARGET_SR)
|
| 105 |
-
|
| 106 |
|
| 107 |
return str(audio_path), str(audio_path), "\n".join(logs)
|
| 108 |
|
|
|
|
| 29 |
logs = []
|
| 30 |
try:
|
| 31 |
DEVICE_CPU = "cpu"
|
| 32 |
+
print(text)
|
| 33 |
|
| 34 |
+
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 36 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
MODEL_NAME,
|
|
|
|
| 39 |
torch_dtype=torch.float32,
|
| 40 |
trust_remote_code=True
|
| 41 |
)
|
| 42 |
+
|
| 43 |
|
| 44 |
+
|
| 45 |
model = PeftModel.from_pretrained(base_model, LORA_NAME, device_map={"": DEVICE_CPU})
|
| 46 |
model.eval()
|
| 47 |
+
|
| 48 |
|
| 49 |
+
|
| 50 |
soh_token = tokenizer.decode([128259])
|
| 51 |
eoh_token = tokenizer.decode([128260])
|
| 52 |
soa_token = tokenizer.decode([128261])
|
|
|
|
| 57 |
|
| 58 |
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE_CPU)
|
| 59 |
|
| 60 |
+
|
| 61 |
with torch.inference_mode():
|
| 62 |
outputs = model.generate(
|
| 63 |
**inputs,
|
|
|
|
| 70 |
pad_token_id=tokenizer.pad_token_id
|
| 71 |
)
|
| 72 |
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 73 |
+
|
| 74 |
|
| 75 |
+
|
| 76 |
snac_min, snac_max = 128266, 156937
|
| 77 |
eos_id = 128258
|
| 78 |
try:
|
|
|
|
| 81 |
eos_idx = len(generated_ids)
|
| 82 |
snac_tokens = [t for t in generated_ids[:eos_idx] if snac_min <= t <= snac_max]
|
| 83 |
|
| 84 |
+
|
| 85 |
l1, l2, l3 = [], [], []
|
| 86 |
frames = len(snac_tokens) // 7
|
| 87 |
snac_tokens = snac_tokens[:frames*7]
|
|
|
|
| 90 |
l1.append((slots[0]-128266)%4096)
|
| 91 |
l2.extend([(slots[1]-128266)%4096, (slots[4]-128266)%4096])
|
| 92 |
l3.extend([(slots[2]-128266)%4096, (slots[3]-128266)%4096, (slots[5]-128266)%4096, (slots[6]-128266)%4096])
|
| 93 |
+
|
| 94 |
+
|
|
|
|
| 95 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(DEVICE_CPU)
|
| 96 |
codes_tensor = [torch.tensor(level, dtype=torch.long, device=DEVICE_CPU).unsqueeze(0) for level in [l1,l2,l3]]
|
| 97 |
with torch.inference_mode():
|
|
|
|
| 102 |
|
| 103 |
audio_path = OUT_ROOT / "tts_output_cpu_lora.wav"
|
| 104 |
sf.write(audio_path, audio, TARGET_SR)
|
| 105 |
+
|
| 106 |
|
| 107 |
return str(audio_path), str(audio_path), "\n".join(logs)
|
| 108 |
|