Spaces:
Sleeping
Sleeping
Commit
Β·
398ce88
1
Parent(s):
4bf5f6c
Add MNIST GAN generator model with LFS tracking
Browse files- .DS_Store +0 -0
- README.md +123 -5
- app.py +228 -0
- discriminator.pth +3 -0
- generator.pth +3 -0
- loss_curve.png +0 -0
- model.py +43 -0
- requirements.txt +5 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
CHANGED
|
@@ -1,13 +1,131 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: gray
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MNIST GAN - Handwritten Digit Generation
|
| 3 |
+
colorFrom: purple
|
|
|
|
| 4 |
colorTo: blue
|
| 5 |
sdk: gradio
|
| 6 |
+
sdk_version: 4.0.0
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
license: mit
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# MNIST GAN - Handwritten Digit Generation
|
| 13 |
+
|
| 14 |
+
A Generative Adversarial Network trained on the MNIST dataset to generate realistic handwritten digit images.
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## Author
|
| 19 |
+
|
| 20 |
+
**Rohan Jain**
|
| 21 |
+
- [LinkedIn](https://www.linkedin.com/in/jaroh23/)
|
| 22 |
+
- [GitHub](https://github.com/rohanjain2312)
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## Model Summary
|
| 27 |
+
|
| 28 |
+
| Property | Details |
|
| 29 |
+
|-----------|----------|
|
| 30 |
+
| Architecture | Fully Connected GAN |
|
| 31 |
+
| Framework | PyTorch 2.0+ |
|
| 32 |
+
| Dataset | MNIST (60,000 training images) |
|
| 33 |
+
| Training Epochs | 200 |
|
| 34 |
+
| Batch Size | 128 |
|
| 35 |
+
| Image Resolution | 28Γ28 pixels |
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## Technical Architecture
|
| 40 |
+
|
| 41 |
+
**Generator:**
|
| 42 |
+
- Input: 100-dimensional latent vector
|
| 43 |
+
- Layers: Linear(100β128) β LeakyReLU β Linear(128β256) β LeakyReLU β Linear(256β512) β LeakyReLU β Linear(512β784) β Tanh
|
| 44 |
+
- Output: 28Γ28 grayscale image
|
| 45 |
+
|
| 46 |
+
**Discriminator:**
|
| 47 |
+
- Input: 784-dimensional flattened image
|
| 48 |
+
- Layers: Linear(784β512) β LeakyReLU β Linear(512β256) β LeakyReLU β Linear(256β1) β Sigmoid
|
| 49 |
+
- Output: Real/Fake probability
|
| 50 |
+
|
| 51 |
+
**Training Configuration:**
|
| 52 |
+
- Loss Function: Binary Cross-Entropy
|
| 53 |
+
- Optimizer: Adam (lr=0.0002, betas=(0.5, 0.999))
|
| 54 |
+
- Normalization: [-1, 1] range
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## Training Results
|
| 59 |
+
|
| 60 |
+
| Epoch | Image Quality |
|
| 61 |
+
|-------|---------------|
|
| 62 |
+
| 1 | Random noise |
|
| 63 |
+
| 50 | Faint digit structures |
|
| 64 |
+
| 100 | Recognizable digits |
|
| 65 |
+
| 150 | Clear, defined digits |
|
| 66 |
+
| 200 | High-quality handwritten digits |
|
| 67 |
+
|
| 68 |
+
**Loss Metrics:**
|
| 69 |
+
- Discriminator Loss (Stabilized): 0.31-0.49
|
| 70 |
+
- Generator Loss (Stabilized): 1.33-1.99
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## Usage
|
| 75 |
+
|
| 76 |
+
**Local Installation:**
|
| 77 |
+
```bash
|
| 78 |
+
git clone https://huggingface.co/spaces/rohanjain2312/MNIST-GAN
|
| 79 |
+
cd MNIST-GAN
|
| 80 |
+
pip install -r requirements.txt
|
| 81 |
+
python app.py
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
**Programmatic Generation:**
|
| 85 |
+
```python
|
| 86 |
+
import torch
|
| 87 |
+
from model import Generator
|
| 88 |
+
|
| 89 |
+
generator = Generator(latent_dim=100, img_shape=(1, 28, 28))
|
| 90 |
+
generator.load_state_dict(torch.load('generator.pth', map_location='cpu'))
|
| 91 |
+
generator.eval()
|
| 92 |
+
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
z = torch.randn(1, 100)
|
| 95 |
+
img = generator(z)
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
## Project Files
|
| 101 |
+
|
| 102 |
+
| File | Description |
|
| 103 |
+
|------|-------------|
|
| 104 |
+
| `app.py` | Gradio interface |
|
| 105 |
+
| `model.py` | Generator and Discriminator architectures |
|
| 106 |
+
| `generator.pth` | Trained generator weights |
|
| 107 |
+
| `discriminator.pth` | Trained discriminator weights |
|
| 108 |
+
| `requirements.txt` | Python dependencies |
|
| 109 |
+
|
| 110 |
+
---
|
| 111 |
+
|
| 112 |
+
## Skills Demonstrated
|
| 113 |
+
|
| 114 |
+
- Generative Adversarial Networks (GANs)
|
| 115 |
+
- PyTorch Implementation
|
| 116 |
+
- Adversarial Training Dynamics
|
| 117 |
+
- Model Deployment (Hugging Face Spaces)
|
| 118 |
+
- Gradio Interface Development
|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
+
## Acknowledgments
|
| 123 |
+
|
| 124 |
+
- Dataset: [MNIST Dataset - Yann LeCun](http://yann.lecun.com/exdb/mnist/)
|
| 125 |
+
- Framework: [Generative Adversarial Nets - Goodfellow et al., 2014](https://arxiv.org/abs/1406.2661)
|
| 126 |
+
|
| 127 |
+
---
|
| 128 |
+
|
| 129 |
+
## License
|
| 130 |
+
|
| 131 |
+
MIT License
|
app.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import time
|
| 6 |
+
from model import Generator, Discriminator
|
| 7 |
+
|
| 8 |
+
# Configuration
|
| 9 |
+
LATENT_DIM = 100
|
| 10 |
+
IMG_SHAPE = (1, 28, 28)
|
| 11 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
+
|
| 13 |
+
# Load the trained models
|
| 14 |
+
generator = Generator(latent_dim=LATENT_DIM, img_shape=IMG_SHAPE).to(DEVICE)
|
| 15 |
+
generator.load_state_dict(torch.load('generator.pth', map_location=DEVICE))
|
| 16 |
+
generator.eval()
|
| 17 |
+
|
| 18 |
+
discriminator = Discriminator(img_shape=IMG_SHAPE).to(DEVICE)
|
| 19 |
+
discriminator.load_state_dict(torch.load('discriminator.pth', map_location=DEVICE))
|
| 20 |
+
discriminator.eval()
|
| 21 |
+
|
| 22 |
+
def generate_digits(num_images, seed, show_confidence):
|
| 23 |
+
"""Generate digits and return with optional confidence scores"""
|
| 24 |
+
start_time = time.time()
|
| 25 |
+
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
# Set seed for reproducibility if provided
|
| 28 |
+
if seed != 0:
|
| 29 |
+
torch.manual_seed(seed)
|
| 30 |
+
np.random.seed(seed)
|
| 31 |
+
|
| 32 |
+
# Generate random noise
|
| 33 |
+
num_images = int(num_images)
|
| 34 |
+
z = torch.randn(num_images, LATENT_DIM).to(DEVICE)
|
| 35 |
+
|
| 36 |
+
# Generate images
|
| 37 |
+
generated_imgs = generator(z)
|
| 38 |
+
|
| 39 |
+
# Get discriminator confidence
|
| 40 |
+
confidence_scores = discriminator(generated_imgs)
|
| 41 |
+
avg_confidence = confidence_scores.mean().item() * 100
|
| 42 |
+
|
| 43 |
+
# Convert to numpy and denormalize
|
| 44 |
+
generated_imgs = generated_imgs.cpu().numpy()
|
| 45 |
+
generated_imgs = ((generated_imgs + 1) / 2 * 255).astype(np.uint8)
|
| 46 |
+
|
| 47 |
+
# Create grid
|
| 48 |
+
grid_size = int(np.ceil(np.sqrt(num_images)))
|
| 49 |
+
grid_img = Image.new('L', (280 * grid_size, 280 * grid_size), color=255)
|
| 50 |
+
|
| 51 |
+
for idx in range(num_images):
|
| 52 |
+
img_pil = Image.fromarray(generated_imgs[idx][0], mode='L')
|
| 53 |
+
img_pil = img_pil.resize((280, 280), Image.NEAREST)
|
| 54 |
+
row = idx // grid_size
|
| 55 |
+
col = idx % grid_size
|
| 56 |
+
grid_img.paste(img_pil, (col * 280, row * 280))
|
| 57 |
+
|
| 58 |
+
generation_time = time.time() - start_time
|
| 59 |
+
|
| 60 |
+
# Build info text
|
| 61 |
+
info_text = f"Generated {num_images} digit(s) in {generation_time:.3f}s"
|
| 62 |
+
if show_confidence:
|
| 63 |
+
info_text += f"\nDiscriminator Confidence: {avg_confidence:.1f}% (how 'real' the digits appear)"
|
| 64 |
+
|
| 65 |
+
return grid_img, info_text
|
| 66 |
+
|
| 67 |
+
def create_comparison_grid():
|
| 68 |
+
"""Create a comparison showing training progress"""
|
| 69 |
+
# Create sample images at different seeds
|
| 70 |
+
seeds = [42, 123, 456, 789]
|
| 71 |
+
images = []
|
| 72 |
+
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
for seed in seeds:
|
| 75 |
+
torch.manual_seed(seed)
|
| 76 |
+
z = torch.randn(1, LATENT_DIM).to(DEVICE)
|
| 77 |
+
img = generator(z)
|
| 78 |
+
img = ((img[0, 0].cpu().numpy() + 1) / 2 * 255).astype(np.uint8)
|
| 79 |
+
img_pil = Image.fromarray(img, mode='L')
|
| 80 |
+
img_pil = img_pil.resize((140, 140), Image.NEAREST)
|
| 81 |
+
images.append(img_pil)
|
| 82 |
+
|
| 83 |
+
# Create grid
|
| 84 |
+
grid = Image.new('L', (280, 280), color=255)
|
| 85 |
+
for idx, img in enumerate(images):
|
| 86 |
+
row = idx // 2
|
| 87 |
+
col = idx % 2
|
| 88 |
+
grid.paste(img, (col * 140, row * 140))
|
| 89 |
+
|
| 90 |
+
return grid
|
| 91 |
+
|
| 92 |
+
# Create interface
|
| 93 |
+
with gr.Blocks(title="MNIST GAN Generator", theme=gr.themes.Soft()) as demo:
|
| 94 |
+
gr.Markdown(
|
| 95 |
+
"""
|
| 96 |
+
# MNIST Handwritten Digit Generator
|
| 97 |
+
### Using Generative Adversarial Networks (GAN)
|
| 98 |
+
|
| 99 |
+
**Created by Rohan Jain** | [LinkedIn](https://www.linkedin.com/in/jaroh23/) | [GitHub](https://github.com/rohanjain2312)
|
| 100 |
+
"""
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
with gr.Tabs():
|
| 104 |
+
# Tab 1: Generate Digits
|
| 105 |
+
with gr.TabItem("Generate Digits"):
|
| 106 |
+
gr.Markdown("Generate new handwritten digits using the trained GAN model.")
|
| 107 |
+
|
| 108 |
+
with gr.Row():
|
| 109 |
+
with gr.Column(scale=1):
|
| 110 |
+
num_images = gr.Slider(
|
| 111 |
+
minimum=1,
|
| 112 |
+
maximum=16,
|
| 113 |
+
value=4,
|
| 114 |
+
step=1,
|
| 115 |
+
label="Number of Digits",
|
| 116 |
+
info="Generate 1-16 digits at once"
|
| 117 |
+
)
|
| 118 |
+
seed = gr.Number(
|
| 119 |
+
value=0,
|
| 120 |
+
label="Random Seed",
|
| 121 |
+
info="Use 0 for random, or set a number for reproducible results"
|
| 122 |
+
)
|
| 123 |
+
show_confidence = gr.Checkbox(
|
| 124 |
+
value=True,
|
| 125 |
+
label="Show Discriminator Confidence",
|
| 126 |
+
info="Display how 'real' the generator fooled the discriminator"
|
| 127 |
+
)
|
| 128 |
+
generate_btn = gr.Button("Generate", variant="primary", size="lg")
|
| 129 |
+
|
| 130 |
+
with gr.Column(scale=2):
|
| 131 |
+
output_image = gr.Image(label="Generated Digits", type="pil")
|
| 132 |
+
output_info = gr.Textbox(label="Generation Info", lines=2)
|
| 133 |
+
|
| 134 |
+
generate_btn.click(
|
| 135 |
+
fn=generate_digits,
|
| 136 |
+
inputs=[num_images, seed, show_confidence],
|
| 137 |
+
outputs=[output_image, output_info]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
gr.Markdown("### Quick Examples")
|
| 141 |
+
gr.Examples(
|
| 142 |
+
examples=[
|
| 143 |
+
[4, 42, True],
|
| 144 |
+
[9, 123, True],
|
| 145 |
+
[16, 456, False],
|
| 146 |
+
],
|
| 147 |
+
inputs=[num_images, seed, show_confidence],
|
| 148 |
+
outputs=[output_image, output_info],
|
| 149 |
+
fn=generate_digits,
|
| 150 |
+
cache_examples=True,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Tab 2: Model Information
|
| 154 |
+
with gr.TabItem("Model Details"):
|
| 155 |
+
gr.Markdown("### Training Loss Curves")
|
| 156 |
+
gr.Image(value="loss_curve.png", label="Generator and Discriminator Loss During Training")
|
| 157 |
+
|
| 158 |
+
gr.Markdown(
|
| 159 |
+
"""
|
| 160 |
+
**Loss Analysis:**
|
| 161 |
+
- The discriminator loss (orange) stabilizes around 0.3-0.4, indicating it effectively distinguishes real from fake
|
| 162 |
+
- The generator loss (blue) shows typical adversarial dynamics, settling around 1.5-2.0
|
| 163 |
+
- The fluctuating losses indicate healthy adversarial balance between the two networks
|
| 164 |
+
"""
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
gr.Markdown(
|
| 170 |
+
"""
|
| 171 |
+
### Training Details
|
| 172 |
+
|
| 173 |
+
**Architecture**: Fully Connected GAN
|
| 174 |
+
**Dataset**: MNIST (60,000 images)
|
| 175 |
+
**Epochs**: 200
|
| 176 |
+
**Batch Size**: 128
|
| 177 |
+
|
| 178 |
+
**Generator**:
|
| 179 |
+
- Input: 100-dim random vector
|
| 180 |
+
- Layers: 128 β 256 β 512 β 784
|
| 181 |
+
- Output: 28Γ28 grayscale image
|
| 182 |
+
|
| 183 |
+
**Discriminator**:
|
| 184 |
+
- Input: 28Γ28 image (784 dims)
|
| 185 |
+
- Layers: 512 β 256 β 1
|
| 186 |
+
- Output: Real/Fake probability
|
| 187 |
+
"""
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
with gr.Column():
|
| 191 |
+
gr.Markdown(
|
| 192 |
+
"""
|
| 193 |
+
### Training Results
|
| 194 |
+
|
| 195 |
+
**Loss Metrics** (Final):
|
| 196 |
+
- Discriminator Loss: ~0.32
|
| 197 |
+
- Generator Loss: ~1.99
|
| 198 |
+
|
| 199 |
+
**Training Evolution**:
|
| 200 |
+
- Epoch 1: Random noise
|
| 201 |
+
- Epoch 50: Faint structures
|
| 202 |
+
- Epoch 100: Recognizable digits
|
| 203 |
+
- Epoch 200: High-quality digits
|
| 204 |
+
|
| 205 |
+
The adversarial training successfully balanced both networks,
|
| 206 |
+
resulting in realistic digit generation.
|
| 207 |
+
"""
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
gr.Markdown("### Sample Outputs (Different Seeds)")
|
| 211 |
+
comparison_img = create_comparison_grid()
|
| 212 |
+
gr.Image(value=comparison_img, label="Generated Samples", type="pil")
|
| 213 |
+
|
| 214 |
+
gr.Markdown(
|
| 215 |
+
"""
|
| 216 |
+
---
|
| 217 |
+
### About This Project
|
| 218 |
+
|
| 219 |
+
This GAN was trained to generate handwritten digits by learning from the MNIST dataset.
|
| 220 |
+
The generator creates images from random noise, while the discriminator learns to distinguish real from fake images.
|
| 221 |
+
Through adversarial training, the generator improves until it produces realistic digits.
|
| 222 |
+
|
| 223 |
+
**Tech Stack**: PyTorch, Gradio, NumPy | **Training**: Google Colab (GPU) | **Deployment**: Hugging Face Spaces
|
| 224 |
+
"""
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if __name__ == "__main__":
|
| 228 |
+
demo.launch()
|
discriminator.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7cd72eed1969132cc1e4ab317d1f7c2217988873bc96350e454ce42ba417d44
|
| 3 |
+
size 2137405
|
generator.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71a3b34bfd986087d5606fb993800425662f9941d8bcf730f18608780d0cd473
|
| 3 |
+
size 2322841
|
loss_curve.png
ADDED
|
model.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
class Generator(nn.Module):
|
| 6 |
+
def __init__(self, latent_dim=100, img_shape=(1, 28, 28)):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.img_shape = img_shape
|
| 9 |
+
|
| 10 |
+
self.model = nn.Sequential(
|
| 11 |
+
nn.Linear(latent_dim, 128),
|
| 12 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 13 |
+
nn.Linear(128, 256),
|
| 14 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 15 |
+
nn.Linear(256, 512),
|
| 16 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 17 |
+
nn.Linear(512, int(np.prod(img_shape))),
|
| 18 |
+
nn.Tanh()
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
def forward(self, z):
|
| 22 |
+
img = self.model(z)
|
| 23 |
+
img = img.view(img.size(0), *self.img_shape)
|
| 24 |
+
return img
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Discriminator(nn.Module):
|
| 28 |
+
def __init__(self, img_shape=(1, 28, 28)):
|
| 29 |
+
super().__init__()
|
| 30 |
+
|
| 31 |
+
self.model = nn.Sequential(
|
| 32 |
+
nn.Linear(int(np.prod(img_shape)), 512),
|
| 33 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 34 |
+
nn.Linear(512, 256),
|
| 35 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 36 |
+
nn.Linear(256, 1),
|
| 37 |
+
nn.Sigmoid()
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def forward(self, img):
|
| 41 |
+
img_flat = img.view(img.size(0), -1)
|
| 42 |
+
validity = self.model(img_flat)
|
| 43 |
+
return validity
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
torchvision>=0.15.0
|
| 3 |
+
gradio>=4.0.0
|
| 4 |
+
numpy>=1.24.0
|
| 5 |
+
Pillow>=9.5.0
|