Spaces:
Sleeping
Sleeping
Commit
·
75dbc58
1
Parent(s):
f45427d
final edits
Browse files- app.py +47 -24
- details.py +12 -15
- limitations.py +12 -24
app.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from functools import partial
|
|
@@ -6,17 +9,12 @@ from details import DETAILS
|
|
| 6 |
from state import Model, Parallelism, Training
|
| 7 |
from calculator import MemoryCalculation
|
| 8 |
from dtypes import DType
|
| 9 |
-
from gradio.themes import
|
| 10 |
from limitations import LIMITATIONS
|
| 11 |
|
| 12 |
# Create a Number component for natural numbers (positive integers)
|
| 13 |
NaturalNumber = partial(gr.Number, minimum=1, step=1, precision=0, interactive=True)
|
| 14 |
|
| 15 |
-
colors = {
|
| 16 |
-
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
|
| 20 |
def create_parallelism_block():
|
| 21 |
with gr.Column():
|
| 22 |
gr.Markdown("# Parallelism")
|
|
@@ -235,12 +233,11 @@ def calculate(tp, pp, cp, ep, fsdp_enabled, fsdp_parallelism, fsdp_strategy, lay
|
|
| 235 |
|
| 236 |
memory_data = pd.DataFrame(individual_data)
|
| 237 |
|
| 238 |
-
# Define pastel color map
|
| 239 |
color_map = {
|
| 240 |
-
'Parameter': '#
|
| 241 |
-
'Gradient': '#
|
| 242 |
-
'Optimizer': '#
|
| 243 |
-
'Activation': '#
|
| 244 |
}
|
| 245 |
|
| 246 |
return gr.BarPlot(
|
|
@@ -279,11 +276,17 @@ css = """
|
|
| 279 |
}
|
| 280 |
"""
|
| 281 |
|
| 282 |
-
theme =
|
| 283 |
-
# otherwise invisible in light mode
|
| 284 |
-
theme.checkbox_label_text_color=theme.block_label_text_color
|
| 285 |
-
with gr.Blocks(theme=theme, css=css) as demo:
|
| 286 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
with gr.Row(equal_height=True):
|
| 288 |
tp, pp, cp, ep, fsdp_enabled, fsdp_parallelism, fsdp_strategy = create_parallelism_block()
|
| 289 |
layers, vocab, hidden, intermediate, active_experts, total_experts, is_moe, presets, weight_tied_embeddings = create_model_block()
|
|
@@ -293,18 +296,38 @@ with gr.Blocks(theme=theme, css=css) as demo:
|
|
| 293 |
|
| 294 |
calculate_button.click(
|
| 295 |
fn=calculate,
|
| 296 |
-
inputs=[
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
-
#
|
| 301 |
with gr.Row():
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
gr.Markdown(LIMITATIONS)
|
| 305 |
-
with gr.Column():
|
| 306 |
-
gr.Markdown("# Comments and Details")
|
| 307 |
-
gr.Markdown(DETAILS)
|
| 308 |
|
| 309 |
|
| 310 |
demo.launch()
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
from functools import partial
|
|
|
|
| 9 |
from state import Model, Parallelism, Training
|
| 10 |
from calculator import MemoryCalculation
|
| 11 |
from dtypes import DType
|
| 12 |
+
from gradio.themes import Base
|
| 13 |
from limitations import LIMITATIONS
|
| 14 |
|
| 15 |
# Create a Number component for natural numbers (positive integers)
|
| 16 |
NaturalNumber = partial(gr.Number, minimum=1, step=1, precision=0, interactive=True)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def create_parallelism_block():
|
| 19 |
with gr.Column():
|
| 20 |
gr.Markdown("# Parallelism")
|
|
|
|
| 233 |
|
| 234 |
memory_data = pd.DataFrame(individual_data)
|
| 235 |
|
|
|
|
| 236 |
color_map = {
|
| 237 |
+
'Parameter': '#C2A9CE',
|
| 238 |
+
'Gradient': '#AADB86',
|
| 239 |
+
'Optimizer': '#F79090',
|
| 240 |
+
'Activation': '#9EC7DD',
|
| 241 |
}
|
| 242 |
|
| 243 |
return gr.BarPlot(
|
|
|
|
| 276 |
}
|
| 277 |
"""
|
| 278 |
|
| 279 |
+
with gr.Blocks(theme='Base', css=css) as demo:
|
|
|
|
|
|
|
|
|
|
| 280 |
with gr.Column():
|
| 281 |
+
gr.Markdown("# LLM Training Memory Visualizer")
|
| 282 |
+
gr.Markdown(
|
| 283 |
+
"""
|
| 284 |
+
## How to Use
|
| 285 |
+
1. Use Presets OR Adjust the parallelism, model, and training panels to match your run.
|
| 286 |
+
2. Press **Calculate** to refresh the memory breakdown chart.
|
| 287 |
+
3. Review the details and references below for context on the estimates.
|
| 288 |
+
"""
|
| 289 |
+
)
|
| 290 |
with gr.Row(equal_height=True):
|
| 291 |
tp, pp, cp, ep, fsdp_enabled, fsdp_parallelism, fsdp_strategy = create_parallelism_block()
|
| 292 |
layers, vocab, hidden, intermediate, active_experts, total_experts, is_moe, presets, weight_tied_embeddings = create_model_block()
|
|
|
|
| 296 |
|
| 297 |
calculate_button.click(
|
| 298 |
fn=calculate,
|
| 299 |
+
inputs=[
|
| 300 |
+
tp,
|
| 301 |
+
pp,
|
| 302 |
+
cp,
|
| 303 |
+
ep,
|
| 304 |
+
fsdp_enabled,
|
| 305 |
+
fsdp_parallelism,
|
| 306 |
+
fsdp_strategy,
|
| 307 |
+
layers,
|
| 308 |
+
vocab,
|
| 309 |
+
hidden,
|
| 310 |
+
intermediate,
|
| 311 |
+
active_experts,
|
| 312 |
+
total_experts,
|
| 313 |
+
is_moe,
|
| 314 |
+
weight_tied_embeddings,
|
| 315 |
+
seq_len,
|
| 316 |
+
batch_size,
|
| 317 |
+
gradient_checkpointing,
|
| 318 |
+
grad_accumulation,
|
| 319 |
+
precision,
|
| 320 |
+
mixed_precision,
|
| 321 |
+
param_dtype,
|
| 322 |
+
reduce_dtype,
|
| 323 |
+
],
|
| 324 |
+
outputs=output,
|
| 325 |
)
|
| 326 |
|
| 327 |
+
gr.Markdown("# Details")
|
| 328 |
with gr.Row():
|
| 329 |
+
gr.Markdown(LIMITATIONS)
|
| 330 |
+
gr.Markdown(DETAILS)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
|
| 333 |
demo.launch()
|
details.py
CHANGED
|
@@ -1,21 +1,18 @@
|
|
| 1 |
DETAILS = """
|
| 2 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
- [The Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook)
|
| 4 |
- [Reducing Activation Recomputation in Large Transformer Models](https://arxiv.org/abs/2205.05198)
|
| 5 |
- [Transformer Math - Michael Wornow](https://michaelwornow.net/2024/01/18/counting-params-in-transformer)
|
| 6 |
- [Transformer Math 101](https://blog.eleuther.ai/transformer-math/)
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
### Why this tool?
|
| 10 |
-
While there are some good tools out there already:
|
| 11 |
-
- [Hugging Face Model Memory Estimator](https://huggingface.co/spaces/hf-accelerate/model-memory-usage)
|
| 12 |
-
- [DeepSpeed Model Memory Calculator](https://huggingface.co/spaces/andstor/deepspeed-model-memory-usage)
|
| 13 |
-
- [DeepSpeed Native Utility](https://deepspeed.readthedocs.io/en/latest/memory.html)
|
| 14 |
-
|
| 15 |
-
None of them had all the features I wanted in one place. I wanted a tool that could:
|
| 16 |
-
- Accept arbitrary model configurations
|
| 17 |
-
- Support FSDP
|
| 18 |
-
- Support 5d parallelism
|
| 19 |
-
- Be interactive and break down memory usage by category, to better inform configurations.
|
| 20 |
-
|
| 21 |
"""
|
|
|
|
|
|
|
|
|
| 1 |
DETAILS = """
|
| 2 |
+
### Motivation
|
| 3 |
+
Existing tools like the [Hugging Face Model Memory Estimator](https://huggingface.co/spaces/hf-accelerate/model-memory-usage), [DeepSpeed Calculator](https://huggingface.co/spaces/andstor/deepspeed-model-memory-usage), and [DeepSpeed Native Utility](https://deepspeed.readthedocs.io/en/latest/memory.html) are valuable but don't support the full range of modern training configurations.
|
| 4 |
+
|
| 5 |
+
This tool adds:
|
| 6 |
+
- Arbitrary model configurations beyond preset architectures
|
| 7 |
+
- FSDP and 5D parallelism support
|
| 8 |
+
- Interactive memory breakdowns by category to inform configuration decisions
|
| 9 |
+
|
| 10 |
+
### References
|
| 11 |
+
Helpful resources used while building this:
|
| 12 |
- [The Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook)
|
| 13 |
- [Reducing Activation Recomputation in Large Transformer Models](https://arxiv.org/abs/2205.05198)
|
| 14 |
- [Transformer Math - Michael Wornow](https://michaelwornow.net/2024/01/18/counting-params-in-transformer)
|
| 15 |
- [Transformer Math 101](https://blog.eleuther.ai/transformer-math/)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
+
|
| 18 |
+
INSTRUCTIONS = """ """
|
limitations.py
CHANGED
|
@@ -1,27 +1,15 @@
|
|
| 1 |
LIMITATIONS = """
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
- May not be true for some implementations which cast on the fly
|
| 8 |
-
- You're using Adam optimizer
|
| 9 |
-
- If using PP you're using a schedule that will keep the number of activations roughly the same
|
| 10 |
-
- EP is the number of PPxTP units that share each expert
|
| 11 |
-
- Swiglu activation function
|
| 12 |
-
- Rotary embeddings
|
| 13 |
|
| 14 |
-
###
|
| 15 |
-
-
|
| 16 |
-
|
| 17 |
-
-
|
| 18 |
-
-
|
| 19 |
-
- Does not include vision layers for multi-modal models
|
| 20 |
-
- Models shared experts as another routed expert per token
|
| 21 |
-
- Does not support different dtypes for different parts of the model
|
| 22 |
-
- e.g. MXFP4 for GPT-OSS 20 and 120B
|
| 23 |
-
- Have not validated EP/FSDP interaction
|
| 24 |
-
- Doesn't model biases on a per-model basis
|
| 25 |
|
| 26 |
-
|
| 27 |
-
"""
|
|
|
|
| 1 |
LIMITATIONS = """
|
| 2 |
+
### Key Assumptions:
|
| 3 |
+
- Standard transformer architecture with homogeneous layers
|
| 4 |
+
- Adam optimizer with mixed precision training (master weights copy)
|
| 5 |
+
- Tensor parallelism includes sequence parallelism
|
| 6 |
+
- Pipeline parallelism maintains consistent activation memory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
### Not Currently Supported:
|
| 9 |
+
- Non-standard architectures (alternating dense/sparse layers, custom attention)
|
| 10 |
+
- Multi-modal models with vision layers
|
| 11 |
+
- Mixed dtype training (e.g., MXFP4)
|
| 12 |
+
- Kernel/framework overhead and intermediate memory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
For advanced configurations, results should be validated against profiling.
|
| 15 |
+
"""
|