Spaces:
Sleeping
Sleeping
Commit
·
b79954f
1
Parent(s):
ddb0136
finish up calcs
Browse files- app.py +14 -8
- calculator.py +162 -0
- defaults.py +16 -7
- state.py +3 -1
app.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from defaults import DEFAULTS
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
return "Hello, " + name + "!" * int(intensity)
|
| 6 |
|
|
|
|
| 7 |
def create_parallelism_block():
|
| 8 |
with gr.Column():
|
| 9 |
gr.Markdown("# Parallelism Parameters")
|
|
@@ -13,29 +15,33 @@ def create_parallelism_block():
|
|
| 13 |
ep = gr.Number(label="Expert Parallelism", value=1, interactive=True)
|
| 14 |
return tp, pp, cp, ep
|
| 15 |
|
|
|
|
| 16 |
def create_model_block():
|
| 17 |
with gr.Column():
|
| 18 |
gr.Markdown("# Model Parameters")
|
| 19 |
layers = gr.Number(label="Number of Layers", value=32, interactive=True)
|
| 20 |
vocab = gr.Number(label="Vocab Size", value=32000, interactive=True)
|
| 21 |
hidden = gr.Number(label="Hidden Dim", value=4096, interactive=True)
|
| 22 |
-
intermediate = gr.Number(
|
|
|
|
|
|
|
| 23 |
presets = gr.Dropdown(list(DEFAULTS.keys()), label="Presets", interactive=True)
|
| 24 |
return layers, vocab, hidden, intermediate, presets
|
| 25 |
|
|
|
|
| 26 |
def create_training_block():
|
| 27 |
with gr.Column():
|
| 28 |
-
gr.Markdown(
|
| 29 |
seq_len = gr.Number(label="Sequence Length", value=8192, interactive=True)
|
| 30 |
batch_size = gr.Number(label="Batch Size", value=8, interactive=True)
|
| 31 |
return seq_len, batch_size
|
| 32 |
|
| 33 |
-
|
|
|
|
| 34 |
out = 1
|
| 35 |
for arg in args:
|
| 36 |
out *= arg
|
| 37 |
return arg
|
| 38 |
-
|
| 39 |
|
| 40 |
|
| 41 |
with gr.Blocks() as demo:
|
|
@@ -46,8 +52,8 @@ with gr.Blocks() as demo:
|
|
| 46 |
seq_len, batch_size = create_training_block()
|
| 47 |
calculate_button = gr.Button("Calculate")
|
| 48 |
output = gr.Number(label="Output")
|
| 49 |
-
|
| 50 |
-
calculate_button.click(fn=calculate, inputs=[tp,pp,cp,ep],outputs=output)
|
| 51 |
-
|
| 52 |
|
| 53 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from defaults import DEFAULTS
|
| 3 |
|
| 4 |
+
|
| 5 |
+
def greet(name, intensity) -> str:
|
| 6 |
return "Hello, " + name + "!" * int(intensity)
|
| 7 |
|
| 8 |
+
|
| 9 |
def create_parallelism_block():
|
| 10 |
with gr.Column():
|
| 11 |
gr.Markdown("# Parallelism Parameters")
|
|
|
|
| 15 |
ep = gr.Number(label="Expert Parallelism", value=1, interactive=True)
|
| 16 |
return tp, pp, cp, ep
|
| 17 |
|
| 18 |
+
|
| 19 |
def create_model_block():
|
| 20 |
with gr.Column():
|
| 21 |
gr.Markdown("# Model Parameters")
|
| 22 |
layers = gr.Number(label="Number of Layers", value=32, interactive=True)
|
| 23 |
vocab = gr.Number(label="Vocab Size", value=32000, interactive=True)
|
| 24 |
hidden = gr.Number(label="Hidden Dim", value=4096, interactive=True)
|
| 25 |
+
intermediate = gr.Number(
|
| 26 |
+
label="Intermediate Dim", value=11008, interactive=True
|
| 27 |
+
)
|
| 28 |
presets = gr.Dropdown(list(DEFAULTS.keys()), label="Presets", interactive=True)
|
| 29 |
return layers, vocab, hidden, intermediate, presets
|
| 30 |
|
| 31 |
+
|
| 32 |
def create_training_block():
|
| 33 |
with gr.Column():
|
| 34 |
+
gr.Markdown("# Training Parameters")
|
| 35 |
seq_len = gr.Number(label="Sequence Length", value=8192, interactive=True)
|
| 36 |
batch_size = gr.Number(label="Batch Size", value=8, interactive=True)
|
| 37 |
return seq_len, batch_size
|
| 38 |
|
| 39 |
+
|
| 40 |
+
def calculate(*args) -> int:
|
| 41 |
out = 1
|
| 42 |
for arg in args:
|
| 43 |
out *= arg
|
| 44 |
return arg
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
with gr.Blocks() as demo:
|
|
|
|
| 52 |
seq_len, batch_size = create_training_block()
|
| 53 |
calculate_button = gr.Button("Calculate")
|
| 54 |
output = gr.Number(label="Output")
|
| 55 |
+
|
| 56 |
+
calculate_button.click(fn=calculate, inputs=[tp, pp, cp, ep], outputs=output)
|
| 57 |
+
|
| 58 |
|
| 59 |
demo.launch()
|
calculator.py
CHANGED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from state import Model as Model, Parallelism, Training
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class MemoryCalculation:
|
| 5 |
+
def __init__(self, model: Model, parallelism: Parallelism, training: Training):
|
| 6 |
+
self.model = model
|
| 7 |
+
self.parallelism = parallelism
|
| 8 |
+
self.training = training
|
| 9 |
+
|
| 10 |
+
def calculate_num_parameters(self) -> float:
|
| 11 |
+
# https://michaelwornow.net/2024/01/18/counting-params-in-transformer
|
| 12 |
+
# https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=memory_usage_in_transformers
|
| 13 |
+
|
| 14 |
+
# Biases are not added/omitted on a per-model basis for simplicity.
|
| 15 |
+
# Just include them where they could appear. They're small in comparison to weights anyway and it forms an upper bound.
|
| 16 |
+
|
| 17 |
+
b, s = self.training.batch_size, self.training.sequence_length
|
| 18 |
+
h, i, l, v, e = (
|
| 19 |
+
self.model.hidden_dim,
|
| 20 |
+
self.model.intermediate_size,
|
| 21 |
+
self.model.num_layers,
|
| 22 |
+
self.model.vocab_size,
|
| 23 |
+
self.model.experts,
|
| 24 |
+
)
|
| 25 |
+
tp, pp, ep = (
|
| 26 |
+
self.parallelism.tensor_parallelism,
|
| 27 |
+
self.parallelism.pipeline_parallelism,
|
| 28 |
+
self.parallelism.expert_parallelism,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Embedding layers
|
| 32 |
+
input_embedding = v * h / tp
|
| 33 |
+
unembedding = 0
|
| 34 |
+
if not self.model.weight_tied_embeddings:
|
| 35 |
+
unembedding = h * v / tp
|
| 36 |
+
|
| 37 |
+
# Attention
|
| 38 |
+
# weights and biases = *2
|
| 39 |
+
layer_norm_attn_in = 2 * h # not tp sharded
|
| 40 |
+
qkv = 3 * h * h / tp
|
| 41 |
+
attn_output_proj = h * h + h / tp
|
| 42 |
+
attn = layer_norm_attn_in + qkv + attn_output_proj
|
| 43 |
+
|
| 44 |
+
# MLP
|
| 45 |
+
layer_norm_mlp_in = 2 * h # not tp sharded
|
| 46 |
+
router = h * e + e # assuming replicated for simplicity
|
| 47 |
+
mlp_up_proj = h * i + i / tp
|
| 48 |
+
mlp_gate_proj = h * i + i / tp
|
| 49 |
+
mlp_down_proj = i * h + h / tp
|
| 50 |
+
expert = mlp_up_proj + mlp_gate_proj + mlp_down_proj
|
| 51 |
+
experts = expert * e / ep
|
| 52 |
+
mlp = layer_norm_mlp_in + router + experts
|
| 53 |
+
|
| 54 |
+
layer = attn + mlp
|
| 55 |
+
layers = layer * l
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
final_layer_norm = 2 * h # not tp sharded
|
| 59 |
+
|
| 60 |
+
# pp and weight tying makes knowing where to embed layer challenging
|
| 61 |
+
# going to assume "worst" case and it's at the end with final layer norm
|
| 62 |
+
# even though that's pretty smalle
|
| 63 |
+
if pp == 1:
|
| 64 |
+
total_params = input_embedding + layers + unembedding + final_layer_norm
|
| 65 |
+
if pp > 1:
|
| 66 |
+
total_params = max(input_embedding, unembedding) + layers/pp + final_layer_norm
|
| 67 |
+
return total_params
|
| 68 |
+
|
| 69 |
+
def calculate_parameter_memory(self) -> float:
|
| 70 |
+
return (
|
| 71 |
+
self.calculate_num_parameters() * 4
|
| 72 |
+
) # assuming 4 bytes (32 bits) per parameter
|
| 73 |
+
|
| 74 |
+
def calculate_activation_parameters(self) -> float:
|
| 75 |
+
# https://blog.eleuther.ai/transformer-math/#activations-and-batch-size
|
| 76 |
+
# https://arxiv.org/abs/2205.05198
|
| 77 |
+
# pp not considered since most pp schemes will run multiple concurrent batches to reduce the bubble
|
| 78 |
+
b, s = self.training.batch_size, self.training.sequence_length
|
| 79 |
+
h, i, l, v, e, ae = (
|
| 80 |
+
self.model.hidden_dim,
|
| 81 |
+
self.model.intermediate_size,
|
| 82 |
+
self.model.num_layers,
|
| 83 |
+
self.model.vocab_size,
|
| 84 |
+
self.model.active_experts,
|
| 85 |
+
)
|
| 86 |
+
tp, cp, pp, ep = (
|
| 87 |
+
self.parallelism.tensor_parallelism,
|
| 88 |
+
self.parallelism.context_parallelism,
|
| 89 |
+
self.parallelism.pipeline_parallelism,
|
| 90 |
+
self.parallelism.expert_parallelism,
|
| 91 |
+
)
|
| 92 |
+
if self.training.gradient_checkpointing:
|
| 93 |
+
# full recomputation
|
| 94 |
+
embed = 0
|
| 95 |
+
layer = s * b * h / cp / tp # only keep initial input to layer
|
| 96 |
+
layers = layer * l
|
| 97 |
+
embed = 0
|
| 98 |
+
final_layer_out = (
|
| 99 |
+
s * b * h / cp / tp
|
| 100 |
+
) # both sequence and tensor parallelism
|
| 101 |
+
final_norm = s * b * h / cp / tp # both sequence and tensor parallelism
|
| 102 |
+
unembed = s * b * v / cp / tp
|
| 103 |
+
logits = s * b * v / cp / tp # both vocab and tensor parallelism
|
| 104 |
+
num_params = (
|
| 105 |
+
embed + layers + final_layer_out + final_norm + unembed + logits
|
| 106 |
+
)
|
| 107 |
+
return num_params
|
| 108 |
+
else:
|
| 109 |
+
# assume flash attention ie do selective recomputation
|
| 110 |
+
# assume tensor parallel + sequence parallel as described in https://arxiv.org/abs/2205.05198
|
| 111 |
+
# the variables calculate the activation outputs
|
| 112 |
+
# Attention Block
|
| 113 |
+
layer_in = s * b * h / cp / tp # both sequence and context parallelism
|
| 114 |
+
attn_norm = s * b * h / cp / tp # both sequence and context parallelism
|
| 115 |
+
flash = s * b * h / cp / tp
|
| 116 |
+
# everything else is recalculated by flash attention
|
| 117 |
+
projection = s * b * h / cp / tp
|
| 118 |
+
attn = layer_in + attn_norm + flash + projection
|
| 119 |
+
# MLP Block
|
| 120 |
+
mlp_norm = s * b * h / cp / tp # both sequence and context parallelism
|
| 121 |
+
router = (
|
| 122 |
+
s * b * e / cp / tp
|
| 123 |
+
) # makes sense to sp shard if mlp_norm out is sp sharded
|
| 124 |
+
mlp_up = s * b * i / cp / tp
|
| 125 |
+
mlp_gate = s * b * i / cp / tp
|
| 126 |
+
hadamard_swiglu = s * b * i / cp / tp
|
| 127 |
+
mlp_down = s * b * h / cp / tp
|
| 128 |
+
expert = mlp_up + mlp_gate + hadamard_swiglu + mlp_down
|
| 129 |
+
experts = expert * ae
|
| 130 |
+
mlp = mlp_norm + router + experts
|
| 131 |
+
layer = attn + mlp
|
| 132 |
+
layers = layer * l
|
| 133 |
+
# Other
|
| 134 |
+
embed = 0
|
| 135 |
+
final_layer_out = (
|
| 136 |
+
s * b * h / cp / tp
|
| 137 |
+
) # both sequence and context parallelism
|
| 138 |
+
final_norm = s * b * h / cp / tp # both sequence and context parallelism
|
| 139 |
+
unembed = s * b * v / cp / tp
|
| 140 |
+
logits = s * b * v / cp / tp
|
| 141 |
+
num_params = (
|
| 142 |
+
embed + layers + final_layer_out + final_norm + unembed + logits
|
| 143 |
+
)
|
| 144 |
+
return num_params
|
| 145 |
+
|
| 146 |
+
def calculate_activation_memory(self) -> float:
|
| 147 |
+
return (
|
| 148 |
+
self.calculate_activation_parameters() * 4
|
| 149 |
+
) # assuming 4 bytes (32 bits) per activation
|
| 150 |
+
|
| 151 |
+
def calculate_gradient_memory(self) -> float:
|
| 152 |
+
# https://blog.eleuther.ai/transformer-math/#gradients
|
| 153 |
+
return (
|
| 154 |
+
self.calculate_parameter_memory()
|
| 155 |
+
) # gradients are same size as parameters
|
| 156 |
+
|
| 157 |
+
def calculate_optimizer_memory(self) -> float:
|
| 158 |
+
# https://blog.eleuther.ai/transformer-math/#optimizer-states
|
| 159 |
+
# https://www.determined.ai/blog/act-mem-2, https://web.archive.org/web/20250308172134/https://www.determined.ai/blog/act-mem-2
|
| 160 |
+
return (
|
| 161 |
+
2 * self.calculate_parameter_memory()
|
| 162 |
+
) # Adam optimizer with 3 states per parameter
|
defaults.py
CHANGED
|
@@ -1,16 +1,25 @@
|
|
| 1 |
from state import ModelState
|
| 2 |
|
| 3 |
-
GEMMA3_270M = ModelState(
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
DEFAULTS = {
|
| 10 |
"Gemma3 270M": GEMMA3_270M,
|
| 11 |
"Gemma3 1B": GEMMA3_1B,
|
| 12 |
"Gemma3 4B": GEMMA3_4B,
|
| 13 |
"Gemma3 12B": GEMMA3_12B,
|
| 14 |
-
"Gemma3 27B": GEMMA3_27B
|
| 15 |
}
|
| 16 |
-
|
|
|
|
| 1 |
from state import ModelState
|
| 2 |
|
| 3 |
+
GEMMA3_270M = ModelState(
|
| 4 |
+
vocab_size=256000, num_layers=9, hidden_dim=1152, intermediate_size=4608
|
| 5 |
+
)
|
| 6 |
+
GEMMA3_1B = ModelState(
|
| 7 |
+
vocab_size=262208, num_layers=26, hidden_dim=2304, intermediate_size=9216
|
| 8 |
+
)
|
| 9 |
+
GEMMA3_4B = ModelState(
|
| 10 |
+
vocab_size=262208, num_layers=28, hidden_dim=3072, intermediate_size=12288
|
| 11 |
+
)
|
| 12 |
+
GEMMA3_12B = ModelState(
|
| 13 |
+
vocab_size=262208, num_layers=42, hidden_dim=4608, intermediate_size=18432
|
| 14 |
+
)
|
| 15 |
+
GEMMA3_27B = ModelState(
|
| 16 |
+
vocab_size=262208, num_layers=46, hidden_dim=6144, intermediate_size=24576
|
| 17 |
+
)
|
| 18 |
|
| 19 |
DEFAULTS = {
|
| 20 |
"Gemma3 270M": GEMMA3_270M,
|
| 21 |
"Gemma3 1B": GEMMA3_1B,
|
| 22 |
"Gemma3 4B": GEMMA3_4B,
|
| 23 |
"Gemma3 12B": GEMMA3_12B,
|
| 24 |
+
"Gemma3 27B": GEMMA3_27B,
|
| 25 |
}
|
|
|
state.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
|
|
|
|
| 3 |
@dataclass
|
| 4 |
class Model:
|
| 5 |
vocab_size: int
|
|
@@ -16,7 +17,8 @@ class Parallelism:
|
|
| 16 |
context_parallelism: int
|
| 17 |
expert_parallelism: int
|
| 18 |
|
|
|
|
| 19 |
@dataclass
|
| 20 |
class Training:
|
| 21 |
sequence_length: int
|
| 22 |
-
batch_size: int
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
|
| 3 |
+
|
| 4 |
@dataclass
|
| 5 |
class Model:
|
| 6 |
vocab_size: int
|
|
|
|
| 17 |
context_parallelism: int
|
| 18 |
expert_parallelism: int
|
| 19 |
|
| 20 |
+
|
| 21 |
@dataclass
|
| 22 |
class Training:
|
| 23 |
sequence_length: int
|
| 24 |
+
batch_size: int
|