shanaka95's picture
basic
69665a6
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Base model name
base_model_name = "meta-llama/Llama-3.2-3B-Instruct"
# Load the base model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto", # Automatically map to GPU if available
torch_dtype=torch.float16, # Use float16 for better performance on GPU
)
# Fine-tuned LoRA adapter
lora_model_name = "shanaka95/autotrain-sios2"
# Load the LoRA adapter and merge it with the base model
model = PeftModel.from_pretrained(base_model, lora_model_name)
# Move the model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
inputs = tokenizer(message, return_tensors="pt").to(device)
# Generate response
outputs = model.generate(
inputs.input_ids,
max_length=300,
temperature=0.2,
top_p=0.8,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128,
)
# Decode the response
return tokenizer.decode(outputs[0], skip_special_tokens=True)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(show_error=True)