Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 2 |
|
|
|
|
| 3 |
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
| 4 |
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
| 5 |
|
|
@@ -9,9 +11,20 @@ def generate_summary(text):
|
|
| 9 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 10 |
return summary
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
+
# Load the tokenizer and model
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
| 6 |
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
|
| 7 |
|
|
|
|
| 11 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 12 |
return summary
|
| 13 |
|
| 14 |
+
# Streamlit interface
|
| 15 |
+
st.title("Text Summarization App")
|
| 16 |
+
|
| 17 |
+
# User text input
|
| 18 |
+
user_input = st.text_area("Enter the text you want to summarize", height=200)
|
| 19 |
+
|
| 20 |
+
if st.button("Generate Summary"):
|
| 21 |
+
if user_input:
|
| 22 |
+
with st.spinner("Generating summary..."):
|
| 23 |
+
summary = generate_summary(user_input)
|
| 24 |
+
st.subheader("Summary:")
|
| 25 |
+
st.write(summary)
|
| 26 |
+
else:
|
| 27 |
+
st.warning("Please enter text to summarize.")
|
| 28 |
+
|
| 29 |
+
# Instructions for using the app
|
| 30 |
+
st.write("Enter your text in the box above and click 'Generate Summary' to get a summarized version of your text.")
|