Spaces:
Runtime error
Runtime error
Commit
Β·
d055610
1
Parent(s):
e45808b
update interface
Browse files
app.py
CHANGED
|
@@ -1,41 +1,38 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from datetime import datetime
|
| 5 |
import os
|
| 6 |
import re
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
from gensim.models.fasttext import load_facebook_model
|
| 10 |
-
|
| 11 |
-
ACCESS_KEY = os.environ.get('ACCESS_KEY')
|
| 12 |
|
| 13 |
|
| 14 |
-
|
| 15 |
-
url = hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
|
| 16 |
-
|
| 17 |
-
model = load_facebook_model(cached_download(url))
|
| 18 |
|
| 19 |
-
def semantic_search(_input,
|
| 20 |
""" Perform semantic search """
|
| 21 |
|
| 22 |
_input = re.split('[,;\n]', _input)
|
| 23 |
_input = [s.strip().lower().replace(' ', '_') for s in _input if s]
|
| 24 |
|
| 25 |
if _input[0] != ACCESS_KEY:
|
| 26 |
-
with open('log.txt', 'a') as f:
|
| 27 |
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
|
| 28 |
|
| 29 |
if len(_input) > 1:
|
| 30 |
avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
|
| 31 |
-
nearest_neighbours = model.wv.most_similar(positive=avg_input, topn=
|
| 32 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
| 33 |
else:
|
| 34 |
-
nearest_neighbours = model.wv.most_similar(positive=_input[0], topn=
|
| 35 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
| 36 |
-
|
| 37 |
if _input[0] == ACCESS_KEY:
|
| 38 |
-
with open('log.txt', 'r') as f:
|
| 39 |
prompts = f.readlines()
|
| 40 |
prompts = [p.strip().split('+++') for p in prompts]
|
| 41 |
result = pd.DataFrame(prompts,
|
|
@@ -43,40 +40,28 @@ def semantic_search(_input, n):
|
|
| 43 |
else:
|
| 44 |
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbours, frequencies)],
|
| 45 |
columns=['Token', 'Cosine Similarity', 'Corpus Frequency'])
|
| 46 |
-
|
| 47 |
result.to_csv('result.csv')
|
| 48 |
return result, 'result.csv', '\n'.join(_input)
|
| 49 |
|
| 50 |
-
app = gr.Blocks()
|
| 51 |
|
| 52 |
with app:
|
| 53 |
-
gr.Markdown(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
|
| 58 |
with gr.Row():
|
| 59 |
n = gr.Slider(value=50, minimum=5, maximum=250, step=5, label="Number of Neighbours")
|
| 60 |
-
|
| 61 |
df_out = gr.Dataframe(interactive=False)
|
| 62 |
f_out = gr.File(interactive=False, label="Download")
|
| 63 |
-
with gr.Column():
|
| 64 |
-
gr.Markdown(
|
| 65 |
-
"""
|
| 66 |
-
#### Project Description
|
| 67 |
-
Call2Vec is a [fastText](https://fasttext.cc/) word embedding model trained via [Gensim](https://radimrehurek.com/gensim/). It maps each token in the vocabulary into a dense, 300-dimensional vector space, designed for performing semantic search.
|
| 68 |
-
The model is trained on a large sample of quarterly earnings conference calls, held by U.S. firms during the 2006-2022 period. In particular, the training data is restriced to the (rather sponentous) executives' remarks of the Q&A section of the call. The data has been preprocessed prior to model training via stop word removal, lemmatization, named entity masking, and coocurrence modeling.
|
| 69 |
-
"""
|
| 70 |
-
)
|
| 71 |
-
gr.Markdown(
|
| 72 |
-
"""
|
| 73 |
-
#### App usage
|
| 74 |
-
The model is intented to be used for **semantic search**: It encodes the search query (entered in the textbox on the right) in a dense vector space and finds semantic neighbours, i.e., token which frequently occur within similar contexts in the underlying training data.
|
| 75 |
-
The model allows for two use cases:
|
| 76 |
-
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
|
| 77 |
-
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
|
| 78 |
-
"""
|
| 79 |
-
)
|
| 80 |
gr.Examples(
|
| 81 |
examples = [
|
| 82 |
["transformation", 20],
|
|
@@ -88,15 +73,32 @@ with app:
|
|
| 88 |
fn = semantic_search,
|
| 89 |
cache_examples=True
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
+
from datetime import datetime
|
| 4 |
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pandas as pd
|
| 8 |
from gensim.models.fasttext import load_facebook_model
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
+
ACCESS_KEY = os.environ.get('ACCESS_KEY')
|
| 13 |
+
url = hf_hub_download(repo_id="simonschoe/call2vec", filename="model.bin") #hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
|
| 14 |
+
model = load_facebook_model(url)
|
|
|
|
| 15 |
|
| 16 |
+
def semantic_search(_input, neighbours):
|
| 17 |
""" Perform semantic search """
|
| 18 |
|
| 19 |
_input = re.split('[,;\n]', _input)
|
| 20 |
_input = [s.strip().lower().replace(' ', '_') for s in _input if s]
|
| 21 |
|
| 22 |
if _input[0] != ACCESS_KEY:
|
| 23 |
+
with open('log.txt', 'a', encoding='utf-8') as f:
|
| 24 |
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
|
| 25 |
|
| 26 |
if len(_input) > 1:
|
| 27 |
avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
|
| 28 |
+
nearest_neighbours = model.wv.most_similar(positive=avg_input, topn=neighbours)
|
| 29 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
| 30 |
else:
|
| 31 |
+
nearest_neighbours = model.wv.most_similar(positive=_input[0], topn=neighbours)
|
| 32 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
| 33 |
+
|
| 34 |
if _input[0] == ACCESS_KEY:
|
| 35 |
+
with open('log.txt', 'r', encoding='utf-8') as f:
|
| 36 |
prompts = f.readlines()
|
| 37 |
prompts = [p.strip().split('+++') for p in prompts]
|
| 38 |
result = pd.DataFrame(prompts,
|
|
|
|
| 40 |
else:
|
| 41 |
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbours, frequencies)],
|
| 42 |
columns=['Token', 'Cosine Similarity', 'Corpus Frequency'])
|
| 43 |
+
|
| 44 |
result.to_csv('result.csv')
|
| 45 |
return result, 'result.csv', '\n'.join(_input)
|
| 46 |
|
| 47 |
+
app = gr.Blocks(theme=gr.themes.Default(), css='#component-0 {max-width: 730px; margin: auto; padding-top: 1.5rem}')
|
| 48 |
|
| 49 |
with app:
|
| 50 |
+
gr.Markdown(
|
| 51 |
+
"""
|
| 52 |
+
# Call2Vec
|
| 53 |
+
## Semantic Search in Quarterly Earnings Conference Calls
|
| 54 |
+
"""
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
with gr.Tabs() as tabs:
|
| 58 |
+
with gr.TabItem("π Model", id=0):
|
| 59 |
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
|
| 60 |
with gr.Row():
|
| 61 |
n = gr.Slider(value=50, minimum=5, maximum=250, step=5, label="Number of Neighbours")
|
| 62 |
+
btn = gr.Button("Search")
|
| 63 |
df_out = gr.Dataframe(interactive=False)
|
| 64 |
f_out = gr.File(interactive=False, label="Download")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
gr.Examples(
|
| 66 |
examples = [
|
| 67 |
["transformation", 20],
|
|
|
|
| 73 |
fn = semantic_search,
|
| 74 |
cache_examples=True
|
| 75 |
)
|
| 76 |
+
with gr.TabItem("π Usage", id=1):
|
| 77 |
+
gr.Markdown(
|
| 78 |
+
"""
|
| 79 |
+
#### App usage
|
| 80 |
+
The model is intended to be used for **semantic search**: It encodes the search query (entered in the textbox on the right) in a dense vector space and finds semantic neighbours, i.e., token which frequently occur within similar contexts in the underlying training data.
|
| 81 |
+
The model allows for two use cases:
|
| 82 |
+
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
|
| 83 |
+
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
|
| 84 |
+
"""
|
| 85 |
+
)
|
| 86 |
+
with gr.TabItem("π About", id=2):
|
| 87 |
+
gr.Markdown(
|
| 88 |
+
"""
|
| 89 |
+
#### Project Description
|
| 90 |
+
Call2Vec is a [fastText](https://fasttext.cc/) word embedding model trained via [Gensim](https://radimrehurek.com/gensim/). It maps each token in the vocabulary into a dense, 300-dimensional vector space, designed for performing semantic search.
|
| 91 |
+
The model is trained on a large sample of quarterly earnings conference calls, held by U.S. firms during the 2006-2022 period. In particular, the training data is restriced to the (rather sponentous) executives' remarks of the Q&A section of the call. The data has been preprocessed prior to model training via stop word removal, lemmatization, named entity masking, and coocurrence modeling.
|
| 92 |
+
"""
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
with gr.Accordion("π Citation", open=False):
|
| 96 |
+
citation_button = gr.Textbox(
|
| 97 |
+
value='Placeholder',
|
| 98 |
+
label='Copy to cite these results.',
|
| 99 |
+
show_copy_button=True
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
btn.click(semantic_search, inputs=[text_in, n], outputs=[df_out, f_out, text_in])
|
| 103 |
|
| 104 |
app.launch()
|