File size: 13,461 Bytes
e061a92
 
bbce510
4ff91cd
 
bbce510
4ff91cd
e061a92
4ff91cd
 
ba2abca
e061a92
4ff91cd
 
ba2abca
e061a92
 
4ff91cd
 
 
 
 
ba2abca
 
 
 
 
 
 
e061a92
 
4ff91cd
ba2abca
4ff91cd
ba2abca
 
 
 
 
bbce510
4ff91cd
 
 
 
 
 
 
 
 
 
bbce510
 
 
d6f1e39
 
 
bbce510
 
 
 
 
4ff91cd
bbce510
4ff91cd
 
 
 
 
 
bbce510
 
 
 
 
 
 
 
d6f1e39
bbce510
e061a92
bbce510
 
 
e061a92
bbce510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ccff83
bbce510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ff91cd
bbce510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e061a92
bbce510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e061a92
bbce510
 
 
 
 
 
9ccff83
bbce510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e061a92
 
 
4ff91cd
 
 
 
bbce510
4ff91cd
bbce510
 
 
 
 
4ff91cd
 
bbce510
 
 
 
 
 
 
 
 
e061a92
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import cv2
import math
import copy
import torch
import glob
import shutil
import pickle
import argparse
import numpy as np
import subprocess
from tqdm import tqdm
from omegaconf import OmegaConf
from transformers import WhisperModel
import sys

from musetalk.utils.blending import get_image
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.audio_processor import AudioProcessor
from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder

def fast_check_ffmpeg():
    try:
        subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
        return True
    except:
        return False

@torch.no_grad()
def main(args):
    # Configure ffmpeg path
    if not fast_check_ffmpeg():
        print("Adding ffmpeg to PATH")
        # Choose path separator based on operating system
        path_separator = ';' if sys.platform == 'win32' else ':'
        os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
        if not fast_check_ffmpeg():
            print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
    
    # Set computing device
    device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
    # Load model weights
    vae, unet, pe = load_all_model(
        unet_model_path=args.unet_model_path, 
        vae_type=args.vae_type,
        unet_config=args.unet_config,
        device=device
    )
    timesteps = torch.tensor([0], device=device)

    # Convert models to half precision if float16 is enabled
    if args.use_float16:
        pe = pe.half()
        vae.vae = vae.vae.half()
        unet.model = unet.model.half()
    
    # Move models to specified device
    pe = pe.to(device)
    vae.vae = vae.vae.to(device)
    unet.model = unet.model.to(device)
        
    # Initialize audio processor and Whisper model
    audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
    weight_dtype = unet.model.dtype
    whisper = WhisperModel.from_pretrained(args.whisper_dir)
    whisper = whisper.to(device=device, dtype=weight_dtype).eval()
    whisper.requires_grad_(False)
    
    # Initialize face parser with configurable parameters based on version
    if args.version == "v15":
        fp = FaceParsing(
            left_cheek_width=args.left_cheek_width,
            right_cheek_width=args.right_cheek_width
        )
    else:  # v1
        fp = FaceParsing()
    
    # Load inference configuration
    inference_config = OmegaConf.load(args.inference_config)
    print("Loaded inference config:", inference_config)
    
    # Process each task
    for task_id in inference_config:
        try:
            # Get task configuration
            video_path = inference_config[task_id]["video_path"]
            audio_path = inference_config[task_id]["audio_path"]
            if "result_name" in inference_config[task_id]:
                args.output_vid_name = inference_config[task_id]["result_name"]
            
            # Set bbox_shift based on version
            if args.version == "v15":
                bbox_shift = 0  # v15 uses fixed bbox_shift
            else:
                bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift)  # v1 uses config or default
            
            # Set output paths
            input_basename = os.path.basename(video_path).split('.')[0]
            audio_basename = os.path.basename(audio_path).split('.')[0]
            output_basename = f"{input_basename}_{audio_basename}"
            
            # Create temporary directories
            temp_dir = os.path.join(args.result_dir, f"{args.version}")
            os.makedirs(temp_dir, exist_ok=True)
            
            # Set result save paths
            result_img_save_path = os.path.join(temp_dir, output_basename)
            crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl")
            os.makedirs(result_img_save_path, exist_ok=True)
            
            # Set output video paths
            if args.output_vid_name is None:
                output_vid_name = os.path.join(temp_dir, output_basename + ".mp4")
            else:
                output_vid_name = os.path.join(temp_dir, args.output_vid_name)
            output_vid_name_concat = os.path.join(temp_dir, output_basename + "_concat.mp4")
            
            # Extract frames from source video
            if get_file_type(video_path) == "video":
                save_dir_full = os.path.join(temp_dir, input_basename)
                os.makedirs(save_dir_full, exist_ok=True)
                cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
                os.system(cmd)
                input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
                fps = get_video_fps(video_path)
            elif get_file_type(video_path) == "image":
                input_img_list = [video_path]
                fps = args.fps
            elif os.path.isdir(video_path):
                input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
                input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
                fps = args.fps
            else:
                raise ValueError(f"{video_path} should be a video file, an image file or a directory of images")

            # Extract audio features
            whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path)
            whisper_chunks = audio_processor.get_whisper_chunk(
                whisper_input_features, 
                device, 
                weight_dtype, 
                whisper, 
                librosa_length,
                fps=fps,
                audio_padding_length_left=args.audio_padding_length_left,
                audio_padding_length_right=args.audio_padding_length_right,
            )
            
            # Preprocess input images
            if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
                print("Using saved coordinates")
                with open(crop_coord_save_path, 'rb') as f:
                    coord_list = pickle.load(f)
                frame_list = read_imgs(input_img_list)
            else:
                print("Extracting landmarks... time-consuming operation")
                coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
                with open(crop_coord_save_path, 'wb') as f:
                    pickle.dump(coord_list, f)
            
            print(f"Number of frames: {len(frame_list)}")         
            
            # Process each frame
            input_latent_list = []
            for bbox, frame in zip(coord_list, frame_list):
                if bbox == coord_placeholder:
                    continue
                x1, y1, x2, y2 = bbox
                if args.version == "v15":
                    y2 = y2 + args.extra_margin
                    y2 = min(y2, frame.shape[0])
                crop_frame = frame[y1:y2, x1:x2]
                crop_frame = cv2.resize(crop_frame, (256,256), interpolation=cv2.INTER_LANCZOS4)
                latents = vae.get_latents_for_unet(crop_frame)
                input_latent_list.append(latents)
        
            # Smooth first and last frames
            frame_list_cycle = frame_list + frame_list[::-1]
            coord_list_cycle = coord_list + coord_list[::-1]
            input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
            
            # Batch inference
            print("Starting inference")
            video_num = len(whisper_chunks)
            batch_size = args.batch_size
            gen = datagen(
                whisper_chunks=whisper_chunks,
                vae_encode_latents=input_latent_list_cycle,
                batch_size=batch_size,
                delay_frame=0,
                device=device,
            )
            
            res_frame_list = []
            total = int(np.ceil(float(video_num) / batch_size))
            
            # Execute inference
            for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=total)):
                audio_feature_batch = pe(whisper_batch)
                latent_batch = latent_batch.to(dtype=unet.model.dtype)
                
                pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
                recon = vae.decode_latents(pred_latents)
                for res_frame in recon:
                    res_frame_list.append(res_frame)
            
            # Pad generated images to original video size
            print("Padding generated images to original video size")
            for i, res_frame in enumerate(tqdm(res_frame_list)):
                bbox = coord_list_cycle[i%(len(coord_list_cycle))]
                ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
                x1, y1, x2, y2 = bbox
                if args.version == "v15":
                    y2 = y2 + args.extra_margin
                    y2 = min(y2, frame.shape[0])
                try:
                    res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
                except:
                    continue
                
                # Merge results with version-specific parameters
                if args.version == "v15":
                    combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
                else:
                    combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp)
                cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png", combine_frame)

            # Save prediction results
            temp_vid_path = f"{temp_dir}/temp_{input_basename}_{audio_basename}.mp4"
            cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid_path}"
            print("Video generation command:", cmd_img2video)
            os.system(cmd_img2video)   
            
            cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid_path} {output_vid_name}"
            print("Audio combination command:", cmd_combine_audio) 
            os.system(cmd_combine_audio)
            
            # Clean up temporary files
            shutil.rmtree(result_img_save_path)
            os.remove(temp_vid_path)
            
            shutil.rmtree(save_dir_full)
            if not args.saved_coord:
                os.remove(crop_coord_save_path)
                    
            print(f"Results saved to {output_vid_name}")
        except Exception as e:
            print("Error occurred during processing:", e)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
    parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
    parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
    parser.add_argument("--unet_config", type=str, default="./models/musetalk/config.json", help="Path to UNet configuration file")
    parser.add_argument("--unet_model_path", type=str, default="./models/musetalkV15/unet.pth", help="Path to UNet model weights")
    parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
    parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml", help="Path to inference configuration file")
    parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
    parser.add_argument("--result_dir", default='./results', help="Directory for output results")
    parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
    parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
    parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
    parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
    parser.add_argument("--batch_size", type=int, default=8, help="Batch size for inference")
    parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
    parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
    parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
    parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference")
    parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
    parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
    parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
    parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Model version to use")
    args = parser.parse_args()
    main(args)