Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| import pdb | |
| import re | |
| import gradio as gr | |
| import numpy as np | |
| import sys | |
| import subprocess | |
| from huggingface_hub import snapshot_download | |
| import requests | |
| import argparse | |
| import os | |
| from omegaconf import OmegaConf | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| import glob | |
| import pickle | |
| from tqdm import tqdm | |
| import copy | |
| from argparse import Namespace | |
| import shutil | |
| import gdown | |
| import imageio | |
| import ffmpeg | |
| from moviepy.editor import * | |
| from transformers import WhisperModel | |
| ProjectDir = os.path.abspath(os.path.dirname(__file__)) | |
| CheckpointsDir = os.path.join(ProjectDir, "models") | |
| def debug_inpainting(video_path, bbox_shift, extra_margin=10, parsing_mode="jaw", | |
| left_cheek_width=90, right_cheek_width=90): | |
| """Debug inpainting parameters, only process the first frame""" | |
| # Set default parameters | |
| args_dict = { | |
| "result_dir": './results/debug', | |
| "fps": 25, | |
| "batch_size": 1, | |
| "output_vid_name": '', | |
| "use_saved_coord": False, | |
| "audio_padding_length_left": 2, | |
| "audio_padding_length_right": 2, | |
| "version": "v15", | |
| "extra_margin": extra_margin, | |
| "parsing_mode": parsing_mode, | |
| "left_cheek_width": left_cheek_width, | |
| "right_cheek_width": right_cheek_width | |
| } | |
| args = Namespace(**args_dict) | |
| # Create debug directory | |
| os.makedirs(args.result_dir, exist_ok=True) | |
| # Read first frame | |
| if get_file_type(video_path) == "video": | |
| reader = imageio.get_reader(video_path) | |
| first_frame = reader.get_data(0) | |
| reader.close() | |
| else: | |
| first_frame = cv2.imread(video_path) | |
| first_frame = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB) | |
| # Save first frame | |
| debug_frame_path = os.path.join(args.result_dir, "debug_frame.png") | |
| cv2.imwrite(debug_frame_path, cv2.cvtColor(first_frame, cv2.COLOR_RGB2BGR)) | |
| # Get face coordinates | |
| coord_list, frame_list = get_landmark_and_bbox([debug_frame_path], bbox_shift) | |
| bbox = coord_list[0] | |
| frame = frame_list[0] | |
| if bbox == coord_placeholder: | |
| return None, "No face detected, please adjust bbox_shift parameter" | |
| # Initialize face parser | |
| fp = FaceParsing( | |
| left_cheek_width=args.left_cheek_width, | |
| right_cheek_width=args.right_cheek_width | |
| ) | |
| # Process first frame | |
| x1, y1, x2, y2 = bbox | |
| y2 = y2 + args.extra_margin | |
| y2 = min(y2, frame.shape[0]) | |
| crop_frame = frame[y1:y2, x1:x2] | |
| crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
| # Generate random audio features | |
| random_audio = torch.randn(1, 50, 384, device=device, dtype=weight_dtype) | |
| audio_feature = pe(random_audio) | |
| # Get latents | |
| latents = vae.get_latents_for_unet(crop_frame) | |
| latents = latents.to(dtype=weight_dtype) | |
| # Generate prediction results | |
| pred_latents = unet.model(latents, timesteps, encoder_hidden_states=audio_feature).sample | |
| recon = vae.decode_latents(pred_latents) | |
| # Inpaint back to original image | |
| res_frame = recon[0] | |
| res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
| combine_frame = get_image(frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp) | |
| # Save results (no need to convert color space again since get_image already returns RGB format) | |
| debug_result_path = os.path.join(args.result_dir, "debug_result.png") | |
| cv2.imwrite(debug_result_path, combine_frame) | |
| # Create information text | |
| info_text = f"Parameter information:\n" + \ | |
| f"bbox_shift: {bbox_shift}\n" + \ | |
| f"extra_margin: {extra_margin}\n" + \ | |
| f"parsing_mode: {parsing_mode}\n" + \ | |
| f"left_cheek_width: {left_cheek_width}\n" + \ | |
| f"right_cheek_width: {right_cheek_width}\n" + \ | |
| f"Detected face coordinates: [{x1}, {y1}, {x2}, {y2}]" | |
| return cv2.cvtColor(combine_frame, cv2.COLOR_RGB2BGR), info_text | |
| def print_directory_contents(path): | |
| for child in os.listdir(path): | |
| child_path = os.path.join(path, child) | |
| if os.path.isdir(child_path): | |
| print(child_path) | |
| def download_model(): | |
| # 检查必需的模型文件是否存在 | |
| required_models = { | |
| "MuseTalk": f"{CheckpointsDir}/musetalkV15/unet.pth", | |
| "MuseTalk": f"{CheckpointsDir}/musetalkV15/musetalk.json", | |
| "SD VAE": f"{CheckpointsDir}/sd-vae/config.json", | |
| "Whisper": f"{CheckpointsDir}/whisper/config.json", | |
| "DWPose": f"{CheckpointsDir}/dwpose/dw-ll_ucoco_384.pth", | |
| "SyncNet": f"{CheckpointsDir}/syncnet/latentsync_syncnet.pt", | |
| "Face Parse": f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth", | |
| "ResNet": f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth" | |
| } | |
| missing_models = [] | |
| for model_name, model_path in required_models.items(): | |
| if not os.path.exists(model_path): | |
| missing_models.append(model_name) | |
| if missing_models: | |
| # 全用英文 | |
| print("The following required model files are missing:") | |
| for model in missing_models: | |
| print(f"- {model}") | |
| print("\nPlease run the download script to download the missing models:") | |
| if sys.platform == "win32": | |
| print("Windows: Run download_weights.bat") | |
| else: | |
| print("Linux/Mac: Run ./download_weights.sh") | |
| return False | |
| else: | |
| print("All required model files exist.") | |
| return True | |
| # Check if models exist, if not download them | |
| if not download_model(): | |
| print("Models not found, downloading...") | |
| import subprocess | |
| subprocess.run(["bash", "download_weights.sh"], check=True) | |
| print("Models downloaded successfully!") | |
| # Check again after download | |
| if not download_model(): | |
| print("Failed to download models, please check the download script") | |
| sys.exit(1) | |
| from musetalk.utils.blending import get_image | |
| from musetalk.utils.face_parsing import FaceParsing | |
| from musetalk.utils.audio_processor import AudioProcessor | |
| from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model | |
| from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder, get_bbox_range | |
| def fast_check_ffmpeg(): | |
| try: | |
| subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True) | |
| return True | |
| except: | |
| return False | |
| def inference(audio_path, video_path, bbox_shift, extra_margin=10, parsing_mode="jaw", | |
| left_cheek_width=90, right_cheek_width=90, progress=gr.Progress(track_tqdm=True)): | |
| # Set default parameters, aligned with inference.py | |
| args_dict = { | |
| "result_dir": './results/output', | |
| "fps": 25, | |
| "batch_size": 8, | |
| "output_vid_name": '', | |
| "use_saved_coord": False, | |
| "audio_padding_length_left": 2, | |
| "audio_padding_length_right": 2, | |
| "version": "v15", # Fixed use v15 version | |
| "extra_margin": extra_margin, | |
| "parsing_mode": parsing_mode, | |
| "left_cheek_width": left_cheek_width, | |
| "right_cheek_width": right_cheek_width | |
| } | |
| args = Namespace(**args_dict) | |
| # Check ffmpeg | |
| if not fast_check_ffmpeg(): | |
| print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed") | |
| input_basename = os.path.basename(video_path).split('.')[0] | |
| audio_basename = os.path.basename(audio_path).split('.')[0] | |
| output_basename = f"{input_basename}_{audio_basename}" | |
| # Create temporary directory | |
| temp_dir = os.path.join(args.result_dir, f"{args.version}") | |
| os.makedirs(temp_dir, exist_ok=True) | |
| # Set result save path | |
| result_img_save_path = os.path.join(temp_dir, output_basename) | |
| crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl") | |
| os.makedirs(result_img_save_path, exist_ok=True) | |
| if args.output_vid_name == "": | |
| output_vid_name = os.path.join(temp_dir, output_basename+".mp4") | |
| else: | |
| output_vid_name = os.path.join(temp_dir, args.output_vid_name) | |
| ############################################## extract frames from source video ############################################## | |
| if get_file_type(video_path) == "video": | |
| save_dir_full = os.path.join(temp_dir, input_basename) | |
| os.makedirs(save_dir_full, exist_ok=True) | |
| # Read video | |
| reader = imageio.get_reader(video_path) | |
| # Save images | |
| for i, im in enumerate(reader): | |
| imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im) | |
| input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) | |
| fps = get_video_fps(video_path) | |
| else: # input img folder | |
| input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) | |
| input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
| fps = args.fps | |
| ############################################## extract audio feature ############################################## | |
| # Extract audio features | |
| whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path) | |
| whisper_chunks = audio_processor.get_whisper_chunk( | |
| whisper_input_features, | |
| device, | |
| weight_dtype, | |
| whisper, | |
| librosa_length, | |
| fps=fps, | |
| audio_padding_length_left=args.audio_padding_length_left, | |
| audio_padding_length_right=args.audio_padding_length_right, | |
| ) | |
| ############################################## preprocess input image ############################################## | |
| if os.path.exists(crop_coord_save_path) and args.use_saved_coord: | |
| print("using extracted coordinates") | |
| with open(crop_coord_save_path,'rb') as f: | |
| coord_list = pickle.load(f) | |
| frame_list = read_imgs(input_img_list) | |
| else: | |
| print("extracting landmarks...time consuming") | |
| coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) | |
| with open(crop_coord_save_path, 'wb') as f: | |
| pickle.dump(coord_list, f) | |
| bbox_shift_text = get_bbox_range(input_img_list, bbox_shift) | |
| # Initialize face parser | |
| fp = FaceParsing( | |
| left_cheek_width=args.left_cheek_width, | |
| right_cheek_width=args.right_cheek_width | |
| ) | |
| i = 0 | |
| input_latent_list = [] | |
| for bbox, frame in zip(coord_list, frame_list): | |
| if bbox == coord_placeholder: | |
| continue | |
| x1, y1, x2, y2 = bbox | |
| y2 = y2 + args.extra_margin | |
| y2 = min(y2, frame.shape[0]) | |
| crop_frame = frame[y1:y2, x1:x2] | |
| crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
| latents = vae.get_latents_for_unet(crop_frame) | |
| input_latent_list.append(latents) | |
| # to smooth the first and the last frame | |
| frame_list_cycle = frame_list + frame_list[::-1] | |
| coord_list_cycle = coord_list + coord_list[::-1] | |
| input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
| ############################################## inference batch by batch ############################################## | |
| print("start inference") | |
| video_num = len(whisper_chunks) | |
| batch_size = args.batch_size | |
| gen = datagen( | |
| whisper_chunks=whisper_chunks, | |
| vae_encode_latents=input_latent_list_cycle, | |
| batch_size=batch_size, | |
| delay_frame=0, | |
| device=device, | |
| ) | |
| res_frame_list = [] | |
| for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): | |
| audio_feature_batch = pe(whisper_batch) | |
| # Ensure latent_batch is consistent with model weight type | |
| latent_batch = latent_batch.to(dtype=weight_dtype) | |
| pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample | |
| recon = vae.decode_latents(pred_latents) | |
| for res_frame in recon: | |
| res_frame_list.append(res_frame) | |
| ############################################## pad to full image ############################################## | |
| print("pad talking image to original video") | |
| for i, res_frame in enumerate(tqdm(res_frame_list)): | |
| bbox = coord_list_cycle[i%(len(coord_list_cycle))] | |
| ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) | |
| x1, y1, x2, y2 = bbox | |
| y2 = y2 + args.extra_margin | |
| y2 = min(y2, frame.shape[0]) | |
| try: | |
| res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
| except: | |
| continue | |
| # Use v15 version blending | |
| combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp) | |
| cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) | |
| # Frame rate | |
| fps = 25 | |
| # Output video path | |
| output_video = 'temp.mp4' | |
| # Read images | |
| def is_valid_image(file): | |
| pattern = re.compile(r'\d{8}\.png') | |
| return pattern.match(file) | |
| images = [] | |
| files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)] | |
| files.sort(key=lambda x: int(x.split('.')[0])) | |
| for file in files: | |
| filename = os.path.join(result_img_save_path, file) | |
| images.append(imageio.imread(filename)) | |
| # Save video | |
| imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p') | |
| input_video = './temp.mp4' | |
| # Check if the input_video and audio_path exist | |
| if not os.path.exists(input_video): | |
| raise FileNotFoundError(f"Input video file not found: {input_video}") | |
| if not os.path.exists(audio_path): | |
| raise FileNotFoundError(f"Audio file not found: {audio_path}") | |
| # Read video | |
| reader = imageio.get_reader(input_video) | |
| fps = reader.get_meta_data()['fps'] # Get original video frame rate | |
| reader.close() # Otherwise, error on win11: PermissionError: [WinError 32] Another program is using this file, process cannot access. : 'temp.mp4' | |
| # Store frames in list | |
| frames = images | |
| print(len(frames)) | |
| # Load the video | |
| video_clip = VideoFileClip(input_video) | |
| # Load the audio | |
| audio_clip = AudioFileClip(audio_path) | |
| # Set the audio to the video | |
| video_clip = video_clip.set_audio(audio_clip) | |
| # Write the output video | |
| video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25) | |
| os.remove("temp.mp4") | |
| #shutil.rmtree(result_img_save_path) | |
| print(f"result is save to {output_vid_name}") | |
| return output_vid_name,bbox_shift_text | |
| # load model weights | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| vae, unet, pe = load_all_model( | |
| unet_model_path="./models/musetalkV15/unet.pth", | |
| vae_type="sd-vae", | |
| unet_config="./models/musetalkV15/musetalk.json", | |
| device=device | |
| ) | |
| # Parse command line arguments | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--ffmpeg_path", type=str, default=r"ffmpeg-master-latest-win64-gpl-shared\bin", help="Path to ffmpeg executable") | |
| parser.add_argument("--ip", type=str, default="127.0.0.1", help="IP address to bind to") | |
| parser.add_argument("--port", type=int, default=7860, help="Port to bind to") | |
| parser.add_argument("--share", action="store_true", help="Create a public link") | |
| parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference") | |
| args = parser.parse_args() | |
| # Set data type | |
| if args.use_float16: | |
| # Convert models to half precision for better performance | |
| pe = pe.half() | |
| vae.vae = vae.vae.half() | |
| unet.model = unet.model.half() | |
| weight_dtype = torch.float16 | |
| else: | |
| weight_dtype = torch.float32 | |
| # Move models to specified device | |
| pe = pe.to(device) | |
| vae.vae = vae.vae.to(device) | |
| unet.model = unet.model.to(device) | |
| timesteps = torch.tensor([0], device=device) | |
| # Initialize audio processor and Whisper model | |
| audio_processor = AudioProcessor(feature_extractor_path="./models/whisper") | |
| whisper = WhisperModel.from_pretrained("./models/whisper") | |
| whisper = whisper.to(device=device, dtype=weight_dtype).eval() | |
| whisper.requires_grad_(False) | |
| def check_video(video): | |
| if not isinstance(video, str): | |
| return video # in case of none type | |
| # Define the output video file name | |
| dir_path, file_name = os.path.split(video) | |
| if file_name.startswith("outputxxx_"): | |
| return video | |
| # Add the output prefix to the file name | |
| output_file_name = "outputxxx_" + file_name | |
| os.makedirs('./results',exist_ok=True) | |
| os.makedirs('./results/output',exist_ok=True) | |
| os.makedirs('./results/input',exist_ok=True) | |
| # Combine the directory path and the new file name | |
| output_video = os.path.join('./results/input', output_file_name) | |
| # read video | |
| reader = imageio.get_reader(video) | |
| fps = reader.get_meta_data()['fps'] # get fps from original video | |
| # conver fps to 25 | |
| frames = [im for im in reader] | |
| target_fps = 25 | |
| L = len(frames) | |
| L_target = int(L / fps * target_fps) | |
| original_t = [x / fps for x in range(1, L+1)] | |
| t_idx = 0 | |
| target_frames = [] | |
| for target_t in range(1, L_target+1): | |
| while target_t / target_fps > original_t[t_idx]: | |
| t_idx += 1 # find the first t_idx so that target_t / target_fps <= original_t[t_idx] | |
| if t_idx >= L: | |
| break | |
| target_frames.append(frames[t_idx]) | |
| # save video | |
| imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p') | |
| return output_video | |
| css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}""" | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown( | |
| """<div align='center'> <h1>MuseTalk: Real-Time High-Fidelity Video Dubbing via Spatio-Temporal Sampling</h1> \ | |
| <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\ | |
| </br>\ | |
| Yue Zhang <sup>*</sup>,\ | |
| Zhizhou Zhong <sup>*</sup>,\ | |
| Minhao Liu<sup>*</sup>,\ | |
| Zhaokang Chen,\ | |
| Bin Wu<sup>†</sup>,\ | |
| Yubin Zeng,\ | |
| Chao Zhang,\ | |
| Yingjie He,\ | |
| Junxin Huang,\ | |
| Wenjiang Zhou <br>\ | |
| (<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, [email protected])\ | |
| Lyra Lab, Tencent Music Entertainment\ | |
| </h2> \ | |
| <a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\ | |
| <a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\ | |
| <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2410.10122'> [Technical report] </a>""" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio = gr.Audio(label="Drving Audio",type="filepath") | |
| video = gr.Video(label="Reference Video",sources=['upload']) | |
| bbox_shift = gr.Number(label="BBox_shift value, px", value=0) | |
| extra_margin = gr.Slider(label="Extra Margin", minimum=0, maximum=40, value=10, step=1) | |
| parsing_mode = gr.Radio(label="Parsing Mode", choices=["jaw", "raw"], value="jaw") | |
| left_cheek_width = gr.Slider(label="Left Cheek Width", minimum=20, maximum=160, value=90, step=5) | |
| right_cheek_width = gr.Slider(label="Right Cheek Width", minimum=20, maximum=160, value=90, step=5) | |
| bbox_shift_scale = gr.Textbox(label="'left_cheek_width' and 'right_cheek_width' parameters determine the range of left and right cheeks editing when parsing model is 'jaw'. The 'extra_margin' parameter determines the movement range of the jaw. Users can freely adjust these three parameters to obtain better inpainting results.") | |
| with gr.Row(): | |
| debug_btn = gr.Button("1. Test Inpainting ") | |
| btn = gr.Button("2. Generate") | |
| with gr.Column(): | |
| debug_image = gr.Image(label="Test Inpainting Result (First Frame)") | |
| debug_info = gr.Textbox(label="Parameter Information", lines=5) | |
| out1 = gr.Video() | |
| video.change( | |
| fn=check_video, inputs=[video], outputs=[video] | |
| ) | |
| btn.click( | |
| fn=inference, | |
| inputs=[ | |
| audio, | |
| video, | |
| bbox_shift, | |
| extra_margin, | |
| parsing_mode, | |
| left_cheek_width, | |
| right_cheek_width | |
| ], | |
| outputs=[out1,bbox_shift_scale] | |
| ) | |
| debug_btn.click( | |
| fn=debug_inpainting, | |
| inputs=[ | |
| video, | |
| bbox_shift, | |
| extra_margin, | |
| parsing_mode, | |
| left_cheek_width, | |
| right_cheek_width | |
| ], | |
| outputs=[debug_image, debug_info] | |
| ) | |
| # Check ffmpeg and add to PATH | |
| if not fast_check_ffmpeg(): | |
| print(f"Adding ffmpeg to PATH: {args.ffmpeg_path}") | |
| # According to operating system, choose path separator | |
| path_separator = ';' if sys.platform == 'win32' else ':' | |
| os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}" | |
| if not fast_check_ffmpeg(): | |
| print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed") | |
| # Solve asynchronous IO issues on Windows | |
| if sys.platform == 'win32': | |
| import asyncio | |
| asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) | |
| # Start Gradio application | |
| demo.queue().launch( | |
| share=args.share, | |
| debug=True, | |
| server_name=args.ip, | |
| server_port=args.port | |
| ) | |