czk32611 commited on
Commit
d32d5f5
·
1 Parent(s): 2edfba8

Add gradio

Browse files
Files changed (5) hide show
  1. README.md +12 -3
  2. app.py +410 -0
  3. entrypoint.sh +9 -0
  4. musetalk/utils/preprocessing.py +41 -0
  5. requirements.txt +3 -0
README.md CHANGED
@@ -11,7 +11,7 @@ Chao Zhan,
11
  Wenjiang Zhou
12
  (<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, [email protected])
13
 
14
- **[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)**
15
 
16
  We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with input videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete virtual human solution.
17
 
@@ -26,7 +26,8 @@ We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+
26
  1. training codes (comming soon).
27
 
28
  # News
29
- - [04/02/2024] Released MuseTalk project and pretrained models.
 
30
 
31
  ## Model
32
  ![Model Structure](assets/figs/musetalk_arc.jpg)
@@ -158,14 +159,22 @@ MuseTalk was trained in latent spaces, where the images were encoded by a freeze
158
 
159
  # TODO:
160
  - [x] trained models and inference codes.
 
 
161
  - [ ] technical report.
162
  - [ ] training codes.
163
- - [ ] online UI.
164
  - [ ] a better model (may take longer).
165
 
166
 
167
  # Getting Started
168
  We provide a detailed tutorial about the installation and the basic usage of MuseTalk for new users:
 
 
 
 
 
 
 
169
  ## Installation
170
  To prepare the Python environment and install additional packages such as opencv, diffusers, mmcv, etc., please follow the steps below:
171
  ### Build environment
 
11
  Wenjiang Zhou
12
  (<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, [email protected])
13
 
14
+ **[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **[gradio](https://huggingface.co/spaces/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)**
15
 
16
  We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with input videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete virtual human solution.
17
 
 
26
  1. training codes (comming soon).
27
 
28
  # News
29
+ - [04/02/2024] Release MuseTalk project and pretrained models.
30
+ - [04/16/2024] Release Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk) on HuggingFace Spaces (thanks to HF team for their community grant)
31
 
32
  ## Model
33
  ![Model Structure](assets/figs/musetalk_arc.jpg)
 
159
 
160
  # TODO:
161
  - [x] trained models and inference codes.
162
+ - [x] Huggingface Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk).
163
+ - [ ] codes for real-time inference.
164
  - [ ] technical report.
165
  - [ ] training codes.
 
166
  - [ ] a better model (may take longer).
167
 
168
 
169
  # Getting Started
170
  We provide a detailed tutorial about the installation and the basic usage of MuseTalk for new users:
171
+
172
+ ## Third party integration
173
+ Thanks for the third-party integration, which makes installation and use more convenient for everyone.
174
+ We also hope you note that we have not verified, maintained, or updated third-party. Please refer to this project for specific results.
175
+
176
+ ### [ComfyUI](https://github.com/chaojie/ComfyUI-MuseTalk)
177
+
178
  ## Installation
179
  To prepare the Python environment and install additional packages such as opencv, diffusers, mmcv, etc., please follow the steps below:
180
  ### Build environment
app.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import pdb
4
+ import re
5
+
6
+ import gradio as gr
7
+ import spaces
8
+ import numpy as np
9
+ import sys
10
+ import subprocess
11
+
12
+ from huggingface_hub import snapshot_download
13
+ import requests
14
+
15
+ import argparse
16
+ import os
17
+ from omegaconf import OmegaConf
18
+ import numpy as np
19
+ import cv2
20
+ import torch
21
+ import glob
22
+ import pickle
23
+ from tqdm import tqdm
24
+ import copy
25
+ from argparse import Namespace
26
+ import shutil
27
+ import gdown
28
+ import imageio
29
+ import ffmpeg
30
+ from moviepy.editor import *
31
+
32
+
33
+ ProjectDir = os.path.abspath(os.path.dirname(__file__))
34
+ CheckpointsDir = os.path.join(ProjectDir, "models")
35
+
36
+ def print_directory_contents(path):
37
+ for child in os.listdir(path):
38
+ child_path = os.path.join(path, child)
39
+ if os.path.isdir(child_path):
40
+ print(child_path)
41
+
42
+ def download_model():
43
+ if not os.path.exists(CheckpointsDir):
44
+ os.makedirs(CheckpointsDir)
45
+ print("Checkpoint Not Downloaded, start downloading...")
46
+ tic = time.time()
47
+ snapshot_download(
48
+ repo_id="TMElyralab/MuseTalk",
49
+ local_dir=CheckpointsDir,
50
+ max_workers=8,
51
+ local_dir_use_symlinks=True,
52
+ )
53
+ # weight
54
+ os.makedirs(f"{CheckpointsDir}/sd-vae-ft-mse/")
55
+ snapshot_download(
56
+ repo_id="stabilityai/sd-vae-ft-mse",
57
+ local_dir=CheckpointsDir+'/sd-vae-ft-mse',
58
+ max_workers=8,
59
+ local_dir_use_symlinks=True,
60
+ )
61
+ #dwpose
62
+ os.makedirs(f"{CheckpointsDir}/dwpose/")
63
+ snapshot_download(
64
+ repo_id="yzd-v/DWPose",
65
+ local_dir=CheckpointsDir+'/dwpose',
66
+ max_workers=8,
67
+ local_dir_use_symlinks=True,
68
+ )
69
+ #vae
70
+ url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
71
+ response = requests.get(url)
72
+ # 确保请求成功
73
+ if response.status_code == 200:
74
+ # 指定文件保存的位置
75
+ file_path = f"{CheckpointsDir}/whisper/tiny.pt"
76
+ os.makedirs(f"{CheckpointsDir}/whisper/")
77
+ # 将文件内容写入指定位置
78
+ with open(file_path, "wb") as f:
79
+ f.write(response.content)
80
+ else:
81
+ print(f"请求失败,状态码:{response.status_code}")
82
+ #gdown face parse
83
+ url = "https://drive.google.com/uc?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812"
84
+ os.makedirs(f"{CheckpointsDir}/face-parse-bisent/")
85
+ file_path = f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth"
86
+ gdown.download(url, file_path, quiet=False)
87
+ #resnet
88
+ url = "https://download.pytorch.org/models/resnet18-5c106cde.pth"
89
+ response = requests.get(url)
90
+ # 确保请求成功
91
+ if response.status_code == 200:
92
+ # 指定文件保存的位置
93
+ file_path = f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth"
94
+ # 将文件内容写入指定位置
95
+ with open(file_path, "wb") as f:
96
+ f.write(response.content)
97
+ else:
98
+ print(f"请求失败,状态码:{response.status_code}")
99
+
100
+
101
+ toc = time.time()
102
+
103
+ print(f"download cost {toc-tic} seconds")
104
+ print_directory_contents(CheckpointsDir)
105
+
106
+ else:
107
+ print("Already download the model.")
108
+
109
+
110
+
111
+
112
+
113
+ download_model() # for huggingface deployment.
114
+
115
+
116
+ from musetalk.utils.utils import get_file_type,get_video_fps,datagen
117
+ from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder,get_bbox_range
118
+ from musetalk.utils.blending import get_image
119
+ from musetalk.utils.utils import load_all_model
120
+
121
+
122
+
123
+
124
+
125
+
126
+ @spaces.GPU(duration=600)
127
+ @torch.no_grad()
128
+ def inference(audio_path,video_path,bbox_shift,progress=gr.Progress(track_tqdm=True)):
129
+ args_dict={"result_dir":'./results/output', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script
130
+ args = Namespace(**args_dict)
131
+
132
+ input_basename = os.path.basename(video_path).split('.')[0]
133
+ audio_basename = os.path.basename(audio_path).split('.')[0]
134
+ output_basename = f"{input_basename}_{audio_basename}"
135
+ result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs
136
+ crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input
137
+ os.makedirs(result_img_save_path,exist_ok =True)
138
+
139
+ if args.output_vid_name=="":
140
+ output_vid_name = os.path.join(args.result_dir, output_basename+".mp4")
141
+ else:
142
+ output_vid_name = os.path.join(args.result_dir, args.output_vid_name)
143
+ ############################################## extract frames from source video ##############################################
144
+ if get_file_type(video_path)=="video":
145
+ save_dir_full = os.path.join(args.result_dir, input_basename)
146
+ os.makedirs(save_dir_full,exist_ok = True)
147
+ # cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
148
+ # os.system(cmd)
149
+ # 读取视频
150
+ reader = imageio.get_reader(video_path)
151
+
152
+ # 保存图片
153
+ for i, im in enumerate(reader):
154
+ imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im)
155
+ input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
156
+ fps = get_video_fps(video_path)
157
+ else: # input img folder
158
+ input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
159
+ input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
160
+ fps = args.fps
161
+ #print(input_img_list)
162
+ ############################################## extract audio feature ##############################################
163
+ whisper_feature = audio_processor.audio2feat(audio_path)
164
+ whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
165
+ ############################################## preprocess input image ##############################################
166
+ if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
167
+ print("using extracted coordinates")
168
+ with open(crop_coord_save_path,'rb') as f:
169
+ coord_list = pickle.load(f)
170
+ frame_list = read_imgs(input_img_list)
171
+ else:
172
+ print("extracting landmarks...time consuming")
173
+ coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
174
+ with open(crop_coord_save_path, 'wb') as f:
175
+ pickle.dump(coord_list, f)
176
+ bbox_shift_text=get_bbox_range(input_img_list, bbox_shift)
177
+ i = 0
178
+ input_latent_list = []
179
+ for bbox, frame in zip(coord_list, frame_list):
180
+ if bbox == coord_placeholder:
181
+ continue
182
+ x1, y1, x2, y2 = bbox
183
+ crop_frame = frame[y1:y2, x1:x2]
184
+ crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
185
+ latents = vae.get_latents_for_unet(crop_frame)
186
+ input_latent_list.append(latents)
187
+
188
+ # to smooth the first and the last frame
189
+ frame_list_cycle = frame_list + frame_list[::-1]
190
+ coord_list_cycle = coord_list + coord_list[::-1]
191
+ input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
192
+ ############################################## inference batch by batch ##############################################
193
+ print("start inference")
194
+ video_num = len(whisper_chunks)
195
+ batch_size = args.batch_size
196
+ gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size)
197
+ res_frame_list = []
198
+ for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
199
+
200
+ tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch]
201
+ audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384
202
+ audio_feature_batch = pe(audio_feature_batch)
203
+
204
+ pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
205
+ recon = vae.decode_latents(pred_latents)
206
+ for res_frame in recon:
207
+ res_frame_list.append(res_frame)
208
+
209
+ ############################################## pad to full image ##############################################
210
+ print("pad talking image to original video")
211
+ for i, res_frame in enumerate(tqdm(res_frame_list)):
212
+ bbox = coord_list_cycle[i%(len(coord_list_cycle))]
213
+ ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
214
+ x1, y1, x2, y2 = bbox
215
+ try:
216
+ res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
217
+ except:
218
+ # print(bbox)
219
+ continue
220
+
221
+ combine_frame = get_image(ori_frame,res_frame,bbox)
222
+ cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame)
223
+
224
+ # cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p temp.mp4"
225
+ # print(cmd_img2video)
226
+ # os.system(cmd_img2video)
227
+ # 帧率
228
+ fps = 25
229
+ # 图片路径
230
+ # 输出视频路径
231
+ output_video = 'temp.mp4'
232
+
233
+ # 读取图片
234
+ def is_valid_image(file):
235
+ pattern = re.compile(r'\d{8}\.png')
236
+ return pattern.match(file)
237
+
238
+ images = []
239
+ files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)]
240
+ files.sort(key=lambda x: int(x.split('.')[0]))
241
+
242
+ for file in files:
243
+ filename = os.path.join(result_img_save_path, file)
244
+ images.append(imageio.imread(filename))
245
+
246
+
247
+ # 保存视频
248
+ imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p')
249
+
250
+ # cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}"
251
+ # print(cmd_combine_audio)
252
+ # os.system(cmd_combine_audio)
253
+
254
+ input_video = './temp.mp4'
255
+ # Check if the input_video and audio_path exist
256
+ if not os.path.exists(input_video):
257
+ raise FileNotFoundError(f"Input video file not found: {input_video}")
258
+ if not os.path.exists(audio_path):
259
+ raise FileNotFoundError(f"Audio file not found: {audio_path}")
260
+
261
+ # 读取视频
262
+ reader = imageio.get_reader(input_video)
263
+ fps = reader.get_meta_data()['fps'] # 获取原视频的帧率
264
+
265
+ # 将帧存储在列表中
266
+ frames = images
267
+
268
+ # 保存视频并添加音频
269
+ # imageio.mimwrite(output_vid_name, frames, 'FFMPEG', fps=fps, codec='libx264', audio_codec='aac', input_params=['-i', audio_path])
270
+
271
+ # input_video = ffmpeg.input(input_video)
272
+
273
+ # input_audio = ffmpeg.input(audio_path)
274
+
275
+ print(len(frames))
276
+
277
+ # imageio.mimwrite(
278
+ # output_video,
279
+ # frames,
280
+ # 'FFMPEG',
281
+ # fps=25,
282
+ # codec='libx264',
283
+ # audio_codec='aac',
284
+ # input_params=['-i', audio_path],
285
+ # output_params=['-y'], # Add the '-y' flag to overwrite the output file if it exists
286
+ # )
287
+ # writer = imageio.get_writer(output_vid_name, fps = 25, codec='libx264', quality=10, pixelformat='yuvj444p')
288
+ # for im in frames:
289
+ # writer.append_data(im)
290
+ # writer.close()
291
+
292
+
293
+
294
+
295
+ # Load the video
296
+ video_clip = VideoFileClip(input_video)
297
+
298
+ # Load the audio
299
+ audio_clip = AudioFileClip(audio_path)
300
+
301
+ # Set the audio to the video
302
+ video_clip = video_clip.set_audio(audio_clip)
303
+
304
+ # Write the output video
305
+ video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25)
306
+
307
+ os.remove("temp.mp4")
308
+ #shutil.rmtree(result_img_save_path)
309
+ print(f"result is save to {output_vid_name}")
310
+ return output_vid_name,bbox_shift_text
311
+
312
+
313
+
314
+ # load model weights
315
+ audio_processor,vae,unet,pe = load_all_model()
316
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
317
+ timesteps = torch.tensor([0], device=device)
318
+
319
+
320
+
321
+
322
+ def check_video(video):
323
+ if not isinstance(video, str):
324
+ return video # in case of none type
325
+ # Define the output video file name
326
+ dir_path, file_name = os.path.split(video)
327
+ if file_name.startswith("outputxxx_"):
328
+ return video
329
+ # Add the output prefix to the file name
330
+ output_file_name = "outputxxx_" + file_name
331
+
332
+ os.makedirs('./results',exist_ok=True)
333
+ os.makedirs('./results/output',exist_ok=True)
334
+ os.makedirs('./results/input',exist_ok=True)
335
+
336
+ # Combine the directory path and the new file name
337
+ output_video = os.path.join('./results/input', output_file_name)
338
+
339
+
340
+ # # Run the ffmpeg command to change the frame rate to 25fps
341
+ # command = f"ffmpeg -i {video} -r 25 -vcodec libx264 -vtag hvc1 -pix_fmt yuv420p crf 18 {output_video} -y"
342
+
343
+ # 读取视频
344
+ reader = imageio.get_reader(video)
345
+ fps = reader.get_meta_data()['fps'] # 获取原视频的帧率
346
+
347
+ # 将帧存储在列表中
348
+ frames = [im for im in reader]
349
+
350
+ # 保存视频
351
+ imageio.mimwrite(output_video, frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p')
352
+ return output_video
353
+
354
+
355
+
356
+
357
+ css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
358
+
359
+ with gr.Blocks(css=css) as demo:
360
+ gr.Markdown(
361
+ "<div align='center'> <h1>MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting </span> </h1> \
362
+ <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
363
+ </br>\
364
+ Yue Zhang <sup>\*</sup>,\
365
+ Minhao Liu<sup>\*</sup>,\
366
+ Zhaokang Chen,\
367
+ Bin Wu<sup>†</sup>,\
368
+ Yingjie He,\
369
+ Chao Zhan,\
370
+ Wenjiang Zhou\
371
+ (<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, [email protected])\
372
+ Lyra Lab, Tencent Music Entertainment\
373
+ </h2> \
374
+ <a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\
375
+ <a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\
376
+ <a style='font-size:18px;color: #000000' href=''> [Technical report(Coming Soon)] </a>\
377
+ <a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> </div>"
378
+ )
379
+
380
+ with gr.Row():
381
+ with gr.Column():
382
+ audio = gr.Audio(label="Driven Audio",type="filepath")
383
+ video = gr.Video(label="Reference Video",sources=['upload'])
384
+ bbox_shift = gr.Number(label="BBox_shift value, px", value=0)
385
+ bbox_shift_scale = gr.Textbox(label="BBox_shift recommend value lower bound,The corresponding bbox range is generated after the initial result is generated. \n If the result is not good, it can be adjusted according to this reference value", value="",interactive=False)
386
+
387
+ btn = gr.Button("Generate")
388
+ out1 = gr.Video()
389
+
390
+ video.change(
391
+ fn=check_video, inputs=[video], outputs=[video]
392
+ )
393
+ btn.click(
394
+ fn=inference,
395
+ inputs=[
396
+ audio,
397
+ video,
398
+ bbox_shift,
399
+ ],
400
+ outputs=[out1,bbox_shift_scale]
401
+ )
402
+
403
+ # Set the IP and port
404
+ ip_address = "0.0.0.0" # Replace with your desired IP address
405
+ port_number = 7860 # Replace with your desired port number
406
+
407
+
408
+ demo.queue().launch(
409
+ share=False , debug=True, server_name=ip_address, server_port=port_number
410
+ )
entrypoint.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ echo "entrypoint.sh"
4
+ whoami
5
+ which python
6
+ source /opt/conda/etc/profile.d/conda.sh
7
+ conda activate musev
8
+ which python
9
+ python app.py
musetalk/utils/preprocessing.py CHANGED
@@ -40,6 +40,47 @@ def read_imgs(img_list):
40
  frames.append(frame)
41
  return frames
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  def get_landmark_and_bbox(img_list,upperbondrange =0):
44
  frames = read_imgs(img_list)
45
  batch_size_fa = 1
 
40
  frames.append(frame)
41
  return frames
42
 
43
+ def get_bbox_range(img_list,upperbondrange =0):
44
+ frames = read_imgs(img_list)
45
+ batch_size_fa = 1
46
+ batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
47
+ coords_list = []
48
+ landmarks = []
49
+ if upperbondrange != 0:
50
+ print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
51
+ else:
52
+ print('get key_landmark and face bounding boxes with the default value')
53
+ average_range_minus = []
54
+ average_range_plus = []
55
+ for fb in tqdm(batches):
56
+ results = inference_topdown(model, np.asarray(fb)[0])
57
+ results = merge_data_samples(results)
58
+ keypoints = results.pred_instances.keypoints
59
+ face_land_mark= keypoints[0][23:91]
60
+ face_land_mark = face_land_mark.astype(np.int32)
61
+
62
+ # get bounding boxes by face detetion
63
+ bbox = fa.get_detections_for_batch(np.asarray(fb))
64
+
65
+ # adjust the bounding box refer to landmark
66
+ # Add the bounding box to a tuple and append it to the coordinates list
67
+ for j, f in enumerate(bbox):
68
+ if f is None: # no face in the image
69
+ coords_list += [coord_placeholder]
70
+ continue
71
+
72
+ half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
73
+ range_minus = (face_land_mark[30]- face_land_mark[29])[1]
74
+ range_plus = (face_land_mark[29]- face_land_mark[28])[1]
75
+ average_range_minus.append(range_minus)
76
+ average_range_plus.append(range_plus)
77
+ if upperbondrange != 0:
78
+ half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下(偏29) - 向上(偏28)
79
+
80
+ text_range=f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}"
81
+ return text_range
82
+
83
+
84
  def get_landmark_and_bbox(img_list,upperbondrange =0):
85
  frames = read_imgs(img_list)
86
  batch_size_fa = 1
requirements.txt CHANGED
@@ -9,3 +9,6 @@ opencv-python==4.9.0.80
9
  soundfile==0.12.1
10
  transformers==4.39.2
11
 
 
 
 
 
9
  soundfile==0.12.1
10
  transformers==4.39.2
11
 
12
+ gdown
13
+ requests
14
+ imageio[ffmpeg]