Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| import PyPDF2 | |
| import docx | |
| import textwrap | |
| # Streamlit Page Config | |
| st.set_page_config( | |
| page_title="TextSphere", | |
| page_icon="🤖", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| # Footer | |
| st.markdown(""" | |
| <style> | |
| .footer { | |
| position: fixed; | |
| bottom: 0; | |
| right: 0; | |
| padding: 10px; | |
| font-size: 16px; | |
| color: #333; | |
| background-color: #f1f1f1; | |
| } | |
| </style> | |
| <div class="footer"> | |
| Made with ❤️ by Baibhav Malviya | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Load Model | |
| def load_models(): | |
| try: | |
| summarization_model = pipeline("summarization", model="facebook/bart-large-cnn") | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to load model: {str(e)}") | |
| return summarization_model | |
| summarization_model = load_models() | |
| # Function to Extract Text from PDF | |
| def extract_text_from_pdf(uploaded_pdf): | |
| try: | |
| pdf_reader = PyPDF2.PdfReader(uploaded_pdf) | |
| pdf_text = "" | |
| for page in pdf_reader.pages: | |
| text = page.extract_text() | |
| if text: | |
| pdf_text += text + "\n" | |
| if not pdf_text.strip(): | |
| st.error("No text found in the PDF.") | |
| return None | |
| return pdf_text | |
| except Exception as e: | |
| st.error(f"Error reading the PDF: {e}") | |
| return None | |
| # Function to Extract Text from TXT | |
| def extract_text_from_txt(uploaded_txt): | |
| try: | |
| return uploaded_txt.read().decode("utf-8").strip() | |
| except Exception as e: | |
| st.error(f"Error reading the TXT file: {e}") | |
| return None | |
| # Function to Extract Text from DOCX | |
| def extract_text_from_docx(uploaded_docx): | |
| try: | |
| doc = docx.Document(uploaded_docx) | |
| return "\n".join([para.text for para in doc.paragraphs]).strip() | |
| except Exception as e: | |
| st.error(f"Error reading the DOCX file: {e}") | |
| return None | |
| # Function to Split Text into 1024-Token Chunks | |
| def chunk_text(text, max_tokens=1024): | |
| return textwrap.wrap(text, width=max_tokens) | |
| # Sidebar for Task Selection (Default: Text Summarization) | |
| st.sidebar.title("AI Solutions") | |
| option = st.sidebar.selectbox( | |
| "Choose a task", | |
| ["Text Summarization", "Question Answering", "Text Classification", "Language Translation"], | |
| index=0 # Default to "Text Summarization" | |
| ) | |
| # Text Summarization Task | |
| if option == "Text Summarization": | |
| st.title("📄 Text Summarization") | |
| st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole document? 🥵</h4>", unsafe_allow_html=True) | |
| uploaded_file = st.file_uploader( | |
| "Upload a document (PDF, TXT, DOCX) - *Note: Processes only 1024 tokens per chunk*", | |
| type=["pdf", "txt", "docx"] | |
| ) | |
| text_to_summarize = "" | |
| if uploaded_file: | |
| file_type = uploaded_file.name.split(".")[-1].lower() | |
| if file_type == "pdf": | |
| text_to_summarize = extract_text_from_pdf(uploaded_file) | |
| elif file_type == "txt": | |
| text_to_summarize = extract_text_from_txt(uploaded_file) | |
| elif file_type == "docx": | |
| text_to_summarize = extract_text_from_docx(uploaded_file) | |
| else: | |
| st.error("Unsupported file format.") | |
| if st.button("Summarize"): | |
| with st.spinner('Summarizing...'): | |
| try: | |
| if text_to_summarize: | |
| chunks = chunk_text(text_to_summarize, max_tokens=1024) | |
| summaries = [] | |
| for chunk in chunks: | |
| input_length = len(chunk.split()) # Count words in the chunk | |
| max_summary_length = max(50, input_length // 2) # Dynamically adjust max_length | |
| summary = summarization_model(chunk, max_length=max_summary_length, min_length=50, do_sample=False) | |
| summaries.append(summary[0]['summary_text']) | |
| final_summary = " ".join(summaries) # Combine all chunk summaries | |
| st.write("### Summary:") | |
| st.write(final_summary) | |
| else: | |
| st.error("Please upload a document first.") | |
| except Exception as e: | |
| st.error(f"Error: {e}") | |