File size: 18,732 Bytes
0f34fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import clip
import math
from functools import partial
from timm.models.vision_transformer import Attention
from models.ROPE import RopeND
from utils.eval_utils import eval_decorator
from utils.train_utils import lengths_to_mask
from diffusions.diffusion import create_diffusion
from diffusions.transport import create_transport, Sampler
#################################################################################
# ACMDM #
#################################################################################
class ACMDM(nn.Module):
def __init__(self, input_dim, cond_mode, latent_dim=256, ff_size=1024, num_layers=8,
num_heads=4, dropout=0, clip_dim=512,
diff_model='Flow', cond_drop_prob=0.1, max_length=49,
patch_size=(1, 22), stride_size=(1, 22), num_joint=22,
clip_version='ViT-B/32', **kargs):
super(ACMDM, self).__init__()
self.input_dim = input_dim
self.latent_dim = latent_dim
self.clip_dim = clip_dim
self.dropout = dropout
self.cond_mode = cond_mode
self.cond_drop_prob = cond_drop_prob
if self.cond_mode == 'action':
assert 'num_actions' in kargs
self.num_actions = kargs.get('num_actions', 1)
self.encode_action = partial(F.one_hot, num_classes=self.num_actions)
# --------------------------------------------------------------------------
# Diffusion
self.diff_model = diff_model
if self.diff_model == 'Flow':
self.train_diffusion = create_transport() # default to linear, velocity prediction
self.gen_diffusion = Sampler(self.train_diffusion)
else:
self.train_diffusion = create_diffusion(timestep_respacing="", noise_schedule="linear")
self.gen_diffusion = create_diffusion(timestep_respacing="", noise_schedule="linear")
# --------------------------------------------------------------------------
# ACMDM
print('Loading ACMDM...')
self.t_embedder = TimestepEmbedder(self.latent_dim)
self.patch_size = patch_size
self.stride_size = stride_size
self.patches_per_frame = (num_joint - patch_size[1]) // stride_size[1] + 1
# Patchification
self.x_embedder = nn.Conv2d(self.input_dim, self.latent_dim, kernel_size=self.patch_size, stride=self.stride_size, bias=True)
# Positional Encoding
max_length = max_length * self.patches_per_frame
self.max_lens = [max_length]
self.rope = RopeND(nd=1, nd_split=[1], max_lens=self.max_lens)
self.position_ids_precompute = torch.arange(max_length).unsqueeze(0)
self.ACMDMTransformer = nn.ModuleList([
ACMDMTransBlock(self.latent_dim, num_heads, mlp_size=ff_size, rope=self.rope, qk_norm=True) for _ in range(num_layers)
])
if self.cond_mode == 'text':
self.y_embedder = nn.Linear(self.clip_dim, self.latent_dim)
elif self.cond_mode == 'action':
self.y_embedder = nn.Linear(self.num_actions, self.latent_dim)
elif self.cond_mode == 'uncond':
self.y_embedder = nn.Identity()
else:
raise KeyError("Unsupported condition mode!!!")
self.final_layer = FinalLayer(self.latent_dim, self.input_dim, patch_size=patch_size, stride_size=stride_size, patches=self.patches_per_frame)
self.initialize_weights()
if self.cond_mode == 'text':
print('Loading CLIP...')
self.clip_version = clip_version
self.clip_model = self.load_and_freeze_clip(clip_version)
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in ACMDM blocks:
for block in self.ACMDMTransformer:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def load_and_freeze_clip(self, clip_version):
clip_model, clip_preprocess = clip.load(clip_version, device='cpu', jit=False)
assert torch.cuda.is_available()
clip.model.convert_weights(clip_model)
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
return clip_model
def encode_text(self, raw_text):
device = next(self.parameters()).device
text = clip.tokenize(raw_text, truncate=True).to(device)
feat_clip_text = self.clip_model.encode_text(text).float()
return feat_clip_text
def mask_cond(self, cond, force_mask=False):
bs, d = cond.shape
if force_mask:
return torch.zeros_like(cond)
elif self.training and self.cond_drop_prob > 0.:
mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_drop_prob).view(bs, 1)
return cond * (1. - mask)
else:
return cond
def forward(self, x, t, conds, attention_mask, context, force_mask=False):
t = self.t_embedder(t, dtype=x.dtype)
conds = self.mask_cond(conds, force_mask=force_mask)
x = torch.cat([context, x], dim=2)
x = self.x_embedder(x)
x = x.flatten(2).transpose(1, 2)
conds = self.y_embedder(conds)
y = t.unsqueeze(1) + conds.unsqueeze(1)
position_ids = self.position_ids_precompute[:, :x.shape[1]]
for block in self.ACMDMTransformer:
x = block(x, y, attention_mask, position_ids=position_ids)
x = self.final_layer(x, y)[:, :, 5:, :]
return x
def forward_with_CFG(self, x, t, conds, attention_mask, context, cfg=1.0):
if not cfg == 1.0:
half = x[: len(x) // 2]
x = torch.cat([half, half], dim=0)
context = torch.cat([context, context], dim=0)
x = self.forward(x, t, conds, attention_mask, context)
if not cfg == 1.0:
cond_eps, uncond_eps = torch.split(x, len(x) // 2, dim=0)
half_eps = uncond_eps + cfg * (cond_eps - uncond_eps)
x = torch.cat([half_eps, half_eps], dim=0)
return x
def forward_loss(self, latents, y, m_lens):
latents = latents.permute(0, 2, 3, 1)
b, l, j, d = latents.shape
device = latents.device
non_pad_mask = lengths_to_mask(m_lens, l)
latents = torch.where(non_pad_mask.unsqueeze(-1).unsqueeze(-1), latents, torch.zeros_like(latents))
# prefix 20, prediction 40 style
target = latents.clone().permute(0, 3, 1, 2).detach()[:, :, 5:, :]
context = latents.clone().permute(0, 3, 1, 2).detach()[:, :, :5, :]
force_mask = False
if self.cond_mode == 'text':
with torch.no_grad():
cond_vector = self.encode_text(y)
elif self.cond_mode == 'action':
cond_vector = self.enc_action(y).to(device).float()
elif self.cond_mode == 'uncond':
cond_vector = torch.zeros(b, self.latent_dim).float().to(device)
force_mask = True
else:
raise NotImplementedError("Unsupported condition mode!!!")
attention_mask = non_pad_mask.unsqueeze(-1).repeat(1, 1, self.patches_per_frame).flatten(1).unsqueeze(
1).unsqueeze(1)
model_kwargs = dict(conds=cond_vector, force_mask=force_mask, attention_mask=attention_mask, context=context)
if self.diff_model == "Flow":
loss_dict = self.train_diffusion.training_losses(self.forward, target, model_kwargs)
else:
t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device)
loss_dict = self.train_diffusion.training_losses(self.forward, target, t, model_kwargs)
loss = loss_dict["loss"]
non_pad_mask = non_pad_mask[:, 5:]
loss = (loss * non_pad_mask).sum() / non_pad_mask.sum()
return loss
@torch.no_grad()
@eval_decorator
def generate(self,
conds,
m_lens,
cond_scale: int,
context,
temperature=1,
j=22,
):
device = next(self.parameters()).device
l = max(m_lens)
b = len(m_lens)
if self.cond_mode == 'text':
with torch.no_grad():
cond_vector = self.encode_text(conds)
elif self.cond_mode == 'action':
cond_vector = self.enc_action(conds).to(device)
elif self.cond_mode == 'uncond':
cond_vector = torch.zeros(b, self.latent_dim).float().to(device)
else:
raise NotImplementedError("Unsupported condition mode!!!")
padding_mask = ~lengths_to_mask(m_lens, l)
if not cond_scale == 1.0:
cond_vector = torch.cat([cond_vector, torch.zeros_like(cond_vector)], dim=0)
# really naive way to write the PrefixAR inferece loop, to be improved
iter = [(0,15),(10,25),(20, 35), (30, 45), (40, l.item())]
out = [context.clone().detach()]
for i in range(len(iter)):
noise = torch.randn(b, self.input_dim, iter[i][1]-iter[i][0]-5, j).to(device)
if not cond_scale == 1.0:
noise = torch.cat([noise, noise], dim=0)
attention_mask = ((~padding_mask)[:, iter[i][0]:iter[i][1]]).unsqueeze(-1).repeat(1,1,self.patches_per_frame).flatten(1).unsqueeze(1).unsqueeze(1)
model_kwargs = dict(conds=cond_vector, attention_mask=attention_mask, context=context, cfg=cond_scale)
sample_fn = self.forward_with_CFG
if not cond_scale == 1:
model_kwargs["attention_mask"] = attention_mask.repeat(2, 1, 1, 1)
if self.diff_model == "Flow":
model_fn = self.gen_diffusion.sample_ode(sampling_method="euler") # default to ode sampling, use euler to prevent underflow as current iter can contain paddings
sampled_token_latent = model_fn(noise, sample_fn, **model_kwargs)[-1]
else:
sampled_token_latent = self.gen_diffusion.p_sample_loop(
sample_fn, noise.shape, noise, clip_denoised=False, model_kwargs=model_kwargs,
progress=False,
temperature=temperature
)
if not cond_scale == 1:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0)
out.append(sampled_token_latent.clone().detach())
context = sampled_token_latent[:, :, 5:, :].clone().detach()
sampled_token_latent = torch.cat(out, dim=2).permute(0,2,3,1)
latents = torch.where(padding_mask.unsqueeze(-1).unsqueeze(-1), torch.zeros_like(sampled_token_latent), sampled_token_latent)
return latents.permute(0,3,1,2)
#################################################################################
# ACMDM Zoos #
#################################################################################
def acmdm_prefixar_flow_s_ps22(**kwargs):
layer = 8
return ACMDM(latent_dim=layer*64, ff_size=layer*64*4, num_layers=layer, num_heads=layer, dropout=0, clip_dim=512,
diff_model="Flow", cond_drop_prob=0.1, max_length=15,
patch_size=(1, 22), stride_size=(1, 22), **kwargs)
ACMDM_models = {
'ACMDM-PrefixAR-Flow-S-PatchSize22': acmdm_prefixar_flow_s_ps22,
}
#################################################################################
# Inner Architectures #
#################################################################################
def modulate(x, shift, scale):
return x * (1 + scale) + shift
class ACMDMAttention(Attention):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
rope=None,
qk_norm=True,
**block_kwargs,
):
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, **block_kwargs)
self.rope = rope
def forward(self, x, position_ids=None, attention_mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.rope is not None:
q, k = self.rope(q, k, position_ids)
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
attn_mask=attention_mask,
dropout_p=self.attn_drop.p
)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwiGLUFFN(nn.Module):
def __init__(
self,
in_features: int,
hidden_features,
bias: bool = True,
) -> None:
super().__init__()
out_features = in_features
hidden_features = hidden_features
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
def forward(self, x):
x12 = self.w12(x)
x1, x2 = x12.chunk(2, dim=-1)
hidden = F.silu(x1) * x2
return self.w3(hidden)
class ACMDMTransBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_size=1024, rope=None, qk_norm=True):
super().__init__()
self.norm1 = LlamaRMSNorm(hidden_size, eps=1e-6)
self.attn = ACMDMAttention(hidden_size, num_heads=num_heads, qkv_bias=True, norm_layer=LlamaRMSNorm,
qk_norm=qk_norm, rope=rope)
self.norm2 = LlamaRMSNorm(hidden_size, eps=1e-6)
self.mlp = SwiGLUFFN(hidden_size, int(2 / 3 * mlp_size))
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c, attention_mask=None, position_ids=None):
dtype = x.dtype
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
norm_x1 = self.norm1(x.to(torch.float32)).to(dtype)
attn_input_x = modulate(norm_x1, shift_msa, scale_msa)
attn_output_x = self.attn(attn_input_x, attention_mask=attention_mask, position_ids=position_ids)
x = x + gate_msa * attn_output_x
norm_x2 = self.norm2(x.to(torch.float32)).to(dtype)
gate_input_x = modulate(norm_x2, shift_mlp, scale_mlp)
gate_output_x = self.mlp(gate_input_x)
x = x + gate_mlp * gate_output_x
return x
class FinalLayer(nn.Module):
def __init__(self, hidden_size, output_size, patch_size=(1, 22), stride_size=(1,22), patches=1):
super().__init__()
self.norm_final = LlamaRMSNorm(hidden_size, eps=1e-6)
self.patch_size = patch_size
self.stride_size = stride_size
self.patches = patches
self.linear = nn.Linear(hidden_size, output_size*patch_size[0]*patch_size[1], bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
norm_x = self.norm_final(x.to(torch.float32)).to(x.dtype)
x = modulate(norm_x, shift, scale)
x = self.linear(x)
x = x.reshape(shape=(x.shape[0], x.shape[1]//self.patches, self.patches, self.patch_size[0], self.patch_size[1], x.shape[-1] // self.patch_size[1]))
x = torch.einsum('nljpqc->nclpjq', x)
x = x.reshape(shape=(x.shape[0], x.shape[1], -1, 22))
return x
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000, dtype=torch.float32):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=dtype) / half
).to(device=t.device, dtype=dtype)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype=torch.bfloat16):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size, dtype=dtype)
t_emb = self.mlp(t_freq)
return t_emb
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight * hidden_states).to(input_dtype)
|