File size: 10,293 Bytes
82a6034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from utils.skeleton import Skeleton
from utils.quaternion import *
from utils.motion_process import t2m_kinematic_chain, t2m_raw_offsets
import torch
import os
n_raw_offsets = torch.from_numpy(t2m_raw_offsets)
kinematic_chain = t2m_kinematic_chain
l_idx1, l_idx2 = 5, 8
face_joint_indx = [2, 1, 17, 16]
# Lazy loading of tgt_offsets - only needed when is_mesh=True
_tgt_offsets_cache = None
def _get_tgt_offsets():
"""Lazily load target offsets for mesh processing. Only called when is_mesh=True."""
global _tgt_offsets_cache
if _tgt_offsets_cache is None:
example_data_path = os.path.join("datasets/HumanML3D/new_joints", "000021" + '.npy')
if not os.path.exists(example_data_path):
raise FileNotFoundError(
f"Example data file not found: {example_data_path}\n"
"This file is only needed for mesh-level motion generation (is_mesh=True).\n"
"For regular text-to-motion generation, use is_mesh=False."
)
example_data = np.load(example_data_path)
example_data = example_data.reshape(len(example_data), -1, 3)
example_data = torch.from_numpy(example_data)
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
_tgt_offsets_cache = tgt_skel.get_offsets_joints(example_data[0])
return _tgt_offsets_cache
l_idx1, l_idx2 = 5, 8
fid_r, fid_l = [8, 11], [7, 10]
r_hip, l_hip = 2, 1
joints_num = 22
def uniform_skeleton(positions, target_offset):
src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0]))
src_offset = src_offset.numpy()
tgt_offset = target_offset.numpy()
# print(src_offset)
# print(tgt_offset)
'''Calculate Scale Ratio as the ratio of legs'''
src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max()
tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max()
scale_rt = tgt_leg_len / src_leg_len
# print(scale_rt)
src_root_pos = positions[:, 0]
tgt_root_pos = src_root_pos * scale_rt
'''Inverse Kinematics'''
quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx)
# print(quat_params.shape)
'''Forward Kinematics'''
src_skel.set_offset(target_offset)
new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos)
return new_joints
def process_file(positions, feet_thre, is_mesh=False):
# (seq_len, joints_num, 3)
# '''Down Sample'''
# positions = positions[::ds_num]
if is_mesh:
'''Uniform Skeleton'''
tgt_offsets = _get_tgt_offsets() # Lazy load only when needed
positions = uniform_skeleton(positions, tgt_offsets)
'''Put on Floor'''
floor_height = positions.min(axis=0).min(axis=0)[1]
positions[:, :, 1] -= floor_height
# print(floor_height)
# plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20)
'''XZ at origin'''
root_pos_init = positions[0]
root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1])
positions = positions - root_pose_init_xz
# '''Move the first pose to origin '''
# root_pos_init = positions[0]
# positions = positions - root_pos_init[0]
'''All initially face Z+'''
r_hip, l_hip, sdr_r, sdr_l = face_joint_indx
across1 = root_pos_init[r_hip] - root_pos_init[l_hip]
across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l]
across = across1 + across2
across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis]
# forward (3,), rotate around y-axis
forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
# forward (3,)
forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis]
# print(forward_init)
target = np.array([[0, 0, 1]])
root_quat_init = qbetween_np(forward_init, target)
root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init
positions_b = positions.copy()
positions = qrot_np(root_quat_init, positions)
# plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20)
'''New ground truth positions'''
global_positions = positions.copy()
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
# plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r')
# plt.xlabel('x')
# plt.ylabel('z')
# plt.axis('equal')
# plt.show()
""" Get Foot Contacts """
def foot_detect(positions, thres):
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
# feet_l_h = positions[:-1,fid_l,1]
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float32)
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
# feet_r_h = positions[:-1,fid_r,1]
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float32)
return feet_l, feet_r
#
feet_l, feet_r = foot_detect(positions, feet_thre)
# feet_l, feet_r = foot_detect(positions, 0.002)
'''Quaternion and Cartesian representation'''
r_rot = None
def get_rifke(positions):
'''Local pose'''
positions[..., 0] -= positions[:, 0:1, 0]
positions[..., 2] -= positions[:, 0:1, 2]
'''All pose face Z+'''
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
return positions
def get_quaternion(positions):
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
# (seq_len, joints_num, 4)
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
'''Fix Quaternion Discontinuity'''
quat_params = qfix(quat_params)
# (seq_len, 4)
r_rot = quat_params[:, 0].copy()
# print(r_rot[0])
'''Root Linear Velocity'''
# (seq_len - 1, 3)
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
# print(r_rot.shape, velocity.shape)
velocity = qrot_np(r_rot[1:], velocity)
'''Root Angular Velocity'''
# (seq_len - 1, 4)
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
quat_params[1:, 0] = r_velocity
# (seq_len, joints_num, 4)
return quat_params, r_velocity, velocity, r_rot
def get_cont6d_params(positions):
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
# (seq_len, joints_num, 4)
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
'''Quaternion to continuous 6D'''
cont_6d_params = quaternion_to_cont6d_np(quat_params)
# (seq_len, 4)
r_rot = quat_params[:, 0].copy()
# print(r_rot[0])
'''Root Linear Velocity'''
# (seq_len - 1, 3)
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
# print(r_rot.shape, velocity.shape)
velocity = qrot_np(r_rot[1:], velocity)
'''Root Angular Velocity'''
# (seq_len - 1, 4)
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
# (seq_len, joints_num, 4)
return cont_6d_params, r_velocity, velocity, r_rot
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
positions = get_rifke(positions)
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
# plt.xlabel('x')
# plt.ylabel('z')
# plt.axis('equal')
# plt.show()
'''Root height'''
root_y = positions[:, 0, 1:2]
'''Root rotation and linear velocity'''
# (seq_len-1, 1) rotation velocity along y-axis
# (seq_len-1, 2) linear velovity on xz plane
r_velocity = np.arcsin(r_velocity[:, 2:3])
l_velocity = velocity[:, [0, 2]]
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
'''Get Joint Rotation Representation'''
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
'''Get Joint Rotation Invariant Position Represention'''
# (seq_len, (joints_num-1)*3) local joint position
ric_data = positions[:, 1:].reshape(len(positions), -1)
'''Get Joint Velocity Representation'''
# (seq_len-1, joints_num*3)
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
global_positions[1:] - global_positions[:-1])
local_vel = local_vel.reshape(len(local_vel), -1)
data = root_data
data = np.concatenate([data, ric_data[:-1]], axis=-1)
data = np.concatenate([data, rot_data[:-1]], axis=-1)
# print(data.shape, local_vel.shape)
data = np.concatenate([data, local_vel], axis=-1)
data = np.concatenate([data, feet_l, feet_r], axis=-1)
return data, global_positions, positions, l_velocity
def back_process(data, is_mesh=False):
data, ground_positions, positions, l_velocity = process_file(data, 0.002, is_mesh=is_mesh)
return data[:, :67]
|