|
|
from os.path import join as pjoin |
|
|
from torch.utils import data |
|
|
import numpy as np |
|
|
import torch |
|
|
from tqdm import tqdm |
|
|
from torch.utils.data._utils.collate import default_collate |
|
|
import random |
|
|
import codecs as cs |
|
|
from utils.glove import GloVe |
|
|
from human_body_prior.body_model.body_model import BodyModel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def collate_fn(batch): |
|
|
batch.sort(key=lambda x: x[3], reverse=True) |
|
|
return default_collate(batch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AEDataset(data.Dataset): |
|
|
def __init__(self, mean, std, motion_dir, window_size, split_file): |
|
|
self.data = [] |
|
|
self.lengths = [] |
|
|
id_list = [] |
|
|
with open(split_file, 'r') as f: |
|
|
for line in f.readlines(): |
|
|
id_list.append(line.strip()) |
|
|
|
|
|
for name in tqdm(id_list): |
|
|
try: |
|
|
motion = np.load(pjoin(motion_dir, name + '.npy')) |
|
|
if len(motion.shape) == 2: |
|
|
motion = np.expand_dims(motion, axis=0) |
|
|
if motion.shape[0] < window_size: |
|
|
continue |
|
|
self.lengths.append(motion.shape[0] - window_size) |
|
|
self.data.append(motion) |
|
|
except Exception as e: |
|
|
pass |
|
|
self.cumsum = np.cumsum([0] + self.lengths) |
|
|
self.window_size = window_size |
|
|
|
|
|
self.mean = mean |
|
|
self.std = std |
|
|
print("Total number of motions {}, snippets {}".format(len(self.data), self.cumsum[-1])) |
|
|
|
|
|
def __len__(self): |
|
|
return self.cumsum[-1] |
|
|
|
|
|
def __getitem__(self, item): |
|
|
if item != 0: |
|
|
motion_id = np.searchsorted(self.cumsum, item) - 1 |
|
|
idx = item - self.cumsum[motion_id] - 1 |
|
|
else: |
|
|
motion_id = 0 |
|
|
idx = 0 |
|
|
motion = self.data[motion_id][idx:idx + self.window_size] |
|
|
"Z Normalization" |
|
|
motion = (motion - self.mean) / self.std |
|
|
|
|
|
return motion |
|
|
|
|
|
|
|
|
class AEMeshDataset(data.Dataset): |
|
|
def __init__(self, mean, std, motion_dir, window_size, split_file): |
|
|
self.data = [] |
|
|
self.lengths = [] |
|
|
id_list = [] |
|
|
with open(split_file, 'r') as f: |
|
|
for line in f.readlines(): |
|
|
id_list.append(line.strip()) |
|
|
|
|
|
for name in id_list: |
|
|
try: |
|
|
motion = np.load(pjoin(motion_dir, name + '.npy')) |
|
|
if motion.shape[0] < window_size: |
|
|
continue |
|
|
self.lengths.append(motion.shape[0] - motion.shape[0]+1) |
|
|
self.data.append(motion) |
|
|
except Exception as e: |
|
|
pass |
|
|
self.cumsum = np.cumsum([0] + self.lengths) |
|
|
self.window_size = window_size |
|
|
|
|
|
self.mean = mean |
|
|
self.std = std |
|
|
num_betas = 10 |
|
|
num_dmpls = 8 |
|
|
self.bm = BodyModel(bm_fname='./body_models/smplh/neutral/model.npz', num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname='./body_models/dmpls/neutral/model.npz') |
|
|
print("Total number of motions {}, snippets {}".format(len(self.data), self.cumsum[-1])) |
|
|
|
|
|
def __len__(self): |
|
|
return self.cumsum[-1] |
|
|
|
|
|
def __getitem__(self, item): |
|
|
motion = self.data[item] |
|
|
body_parms = { |
|
|
'root_orient': torch.from_numpy(motion[:, :3]).float(), |
|
|
'pose_body': torch.from_numpy(motion[:, 3:66]).float(), |
|
|
'pose_hand': torch.from_numpy(motion[:, 66:52*3]).float(), |
|
|
'trans': torch.from_numpy(motion[:, 52*3:53*3]).float(), |
|
|
'betas': torch.from_numpy(motion[:, 53*3:53*3+10]).float(), |
|
|
'dmpls': torch.from_numpy(motion[:, 53*3+10:]).float() |
|
|
} |
|
|
body_parms['betas']= torch.zeros_like(torch.from_numpy(motion[:, 53*3:53*3+10]).float()) |
|
|
with torch.no_grad(): |
|
|
verts = self.bm(**body_parms).v |
|
|
verts[:, :, 1] -= verts[:, :, 1].min() |
|
|
idx = random.randint(0, verts.shape[0] - 1) |
|
|
verts = verts[idx:idx + self.window_size].detach().cpu().numpy() |
|
|
"Z Normalization" |
|
|
verts = (verts - self.mean) / self.std |
|
|
|
|
|
return verts |
|
|
|
|
|
|
|
|
|
|
|
class Text2MotionDataset(data.Dataset): |
|
|
def __init__(self, mean, std, split_file, dataset_name, motion_dir, text_dir, unit_length, max_motion_length, |
|
|
max_text_length, evaluation=False, is_mesh=False): |
|
|
self.evaluation = evaluation |
|
|
self.max_length = 20 |
|
|
self.pointer = 0 |
|
|
self.max_motion_length = max_motion_length |
|
|
self.max_text_len = max_text_length |
|
|
self.unit_length = unit_length |
|
|
min_motion_len = 40 if dataset_name =='t2m' else 24 |
|
|
|
|
|
data_dict = {} |
|
|
id_list = [] |
|
|
with cs.open(split_file, 'r') as f: |
|
|
for line in f.readlines(): |
|
|
id_list.append(line.strip()) |
|
|
|
|
|
new_name_list = [] |
|
|
length_list = [] |
|
|
for name in tqdm(id_list): |
|
|
try: |
|
|
motion = np.load(pjoin(motion_dir, name + '.npy')) |
|
|
if len(motion.shape) == 2: |
|
|
motion = np.expand_dims(motion, axis=0) |
|
|
if is_mesh: |
|
|
if (len(motion)) < min_motion_len: |
|
|
continue |
|
|
else: |
|
|
if (len(motion)) < min_motion_len or (len(motion) >= 200): |
|
|
continue |
|
|
text_data = [] |
|
|
flag = False |
|
|
with cs.open(pjoin(text_dir, name + '.txt')) as f: |
|
|
for line in f.readlines(): |
|
|
text_dict = {} |
|
|
line_split = line.strip().split('#') |
|
|
caption = line_split[0] |
|
|
tokens = line_split[1].split(' ') |
|
|
f_tag = float(line_split[2]) |
|
|
to_tag = float(line_split[3]) |
|
|
f_tag = 0.0 if np.isnan(f_tag) else f_tag |
|
|
to_tag = 0.0 if np.isnan(to_tag) else to_tag |
|
|
|
|
|
text_dict['caption'] = caption |
|
|
text_dict['tokens'] = tokens |
|
|
if f_tag == 0.0 and to_tag == 0.0: |
|
|
flag = True |
|
|
text_data.append(text_dict) |
|
|
else: |
|
|
try: |
|
|
n_motion = motion[int(f_tag*20) : int(to_tag*20)] |
|
|
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200): |
|
|
continue |
|
|
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name |
|
|
while new_name in data_dict: |
|
|
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name |
|
|
data_dict[new_name] = {'motion': n_motion, |
|
|
'length': len(n_motion), |
|
|
'text':[text_dict]} |
|
|
new_name_list.append(new_name) |
|
|
length_list.append(len(n_motion)) |
|
|
except: |
|
|
print(line_split) |
|
|
print(line_split[2], line_split[3], f_tag, to_tag, name) |
|
|
|
|
|
if flag: |
|
|
data_dict[name] = {'motion': motion, |
|
|
'length': len(motion), |
|
|
'text': text_data} |
|
|
new_name_list.append(name) |
|
|
length_list.append(len(motion)) |
|
|
except: |
|
|
pass |
|
|
if self.evaluation: |
|
|
self.w_vectorizer = GloVe('./glove', 'our_vab') |
|
|
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1])) |
|
|
else: |
|
|
name_list, length_list = new_name_list, length_list |
|
|
self.mean = mean |
|
|
self.std = std |
|
|
self.length_arr = np.array(length_list) |
|
|
self.data_dict = data_dict |
|
|
self.name_list = name_list |
|
|
if self.evaluation: |
|
|
self.reset_max_len(self.max_length) |
|
|
|
|
|
def reset_max_len(self, length): |
|
|
assert length <= self.max_motion_length |
|
|
self.pointer = np.searchsorted(self.length_arr, length) |
|
|
print("Pointer Pointing at %d"%self.pointer) |
|
|
self.max_length = length |
|
|
|
|
|
def transform(self, data, mean=None, std=None): |
|
|
if mean is None and std is None: |
|
|
return (data - self.mean) / self.std |
|
|
else: |
|
|
return (data - mean) / std |
|
|
|
|
|
def inv_transform(self, data, mean=None, std=None): |
|
|
if mean is None and std is None: |
|
|
return data * self.std + self.mean |
|
|
else: |
|
|
return data * std + mean |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.data_dict) - self.pointer |
|
|
|
|
|
def __getitem__(self, item): |
|
|
idx = self.pointer + item |
|
|
data = self.data_dict[self.name_list[idx]] |
|
|
motion, m_length, text_list = data['motion'], data['length'], data['text'] |
|
|
|
|
|
text_data = random.choice(text_list) |
|
|
caption, tokens = text_data['caption'], text_data['tokens'] |
|
|
|
|
|
if self.evaluation: |
|
|
if len(tokens) < self.max_text_len: |
|
|
|
|
|
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] |
|
|
sent_len = len(tokens) |
|
|
tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len) |
|
|
else: |
|
|
|
|
|
tokens = tokens[:self.max_text_len] |
|
|
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] |
|
|
sent_len = len(tokens) |
|
|
pos_one_hots = [] |
|
|
word_embeddings = [] |
|
|
for token in tokens: |
|
|
word_emb, pos_oh = self.w_vectorizer[token] |
|
|
pos_one_hots.append(pos_oh[None, :]) |
|
|
word_embeddings.append(word_emb[None, :]) |
|
|
pos_one_hots = np.concatenate(pos_one_hots, axis=0) |
|
|
word_embeddings = np.concatenate(word_embeddings, axis=0) |
|
|
|
|
|
if self.unit_length < 10: |
|
|
coin2 = np.random.choice(['single', 'single', 'double']) |
|
|
else: |
|
|
coin2 = 'single' |
|
|
|
|
|
if coin2 == 'double': |
|
|
m_length = (m_length // self.unit_length - 1) * self.unit_length |
|
|
elif coin2 == 'single': |
|
|
m_length = (m_length // self.unit_length) * self.unit_length |
|
|
idx = random.randint(0, len(motion) - m_length) |
|
|
motion = motion[idx:idx+m_length] |
|
|
|
|
|
"Z Normalization" |
|
|
motion = (motion - self.mean) / self.std |
|
|
|
|
|
if m_length < self.max_motion_length: |
|
|
motion = np.concatenate([motion, |
|
|
np.zeros((self.max_motion_length - m_length, motion.shape[1], motion.shape[2])) |
|
|
], axis=0) |
|
|
elif m_length > self.max_motion_length: |
|
|
idx = random.randint(0, m_length - self.max_motion_length) |
|
|
motion = motion[idx:idx + self.max_motion_length] |
|
|
if self.evaluation: |
|
|
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens) |
|
|
else: |
|
|
return caption, motion, m_length |
|
|
|
|
|
|
|
|
class Text2MotionDataset_Another_V(data.Dataset): |
|
|
def __init__(self, mean, std, split_file, dataset_name, motion_dir, text_dir, unit_length, max_motion_length, |
|
|
max_text_length, evaluation=False, is_mesh=False): |
|
|
self.evaluation = evaluation |
|
|
self.max_length = 20 |
|
|
self.pointer = 0 |
|
|
self.max_motion_length = max_motion_length |
|
|
self.max_text_len = max_text_length |
|
|
self.unit_length = unit_length |
|
|
min_motion_len = 40 if dataset_name =='t2m' else 24 |
|
|
|
|
|
data_dict = {} |
|
|
id_list = [] |
|
|
with cs.open(split_file, 'r') as f: |
|
|
for line in f.readlines(): |
|
|
id_list.append(line.strip()) |
|
|
|
|
|
new_name_list = [] |
|
|
length_list = [] |
|
|
for name in tqdm(id_list): |
|
|
try: |
|
|
motion = np.load(pjoin(motion_dir, name + '.npy')) |
|
|
if not self.evaluation: |
|
|
if len(motion.shape) == 2: |
|
|
motion = np.expand_dims(motion, axis=0) |
|
|
if is_mesh: |
|
|
if (len(motion)) < min_motion_len: |
|
|
continue |
|
|
else: |
|
|
if (len(motion)) < min_motion_len or (len(motion) >= 200): |
|
|
continue |
|
|
text_data = [] |
|
|
flag = False |
|
|
with cs.open(pjoin(text_dir, name + '.txt')) as f: |
|
|
for line in f.readlines(): |
|
|
text_dict = {} |
|
|
line_split = line.strip().split('#') |
|
|
caption = line_split[0] |
|
|
tokens = line_split[1].split(' ') |
|
|
f_tag = float(line_split[2]) |
|
|
to_tag = float(line_split[3]) |
|
|
f_tag = 0.0 if np.isnan(f_tag) else f_tag |
|
|
to_tag = 0.0 if np.isnan(to_tag) else to_tag |
|
|
|
|
|
text_dict['caption'] = caption |
|
|
text_dict['tokens'] = tokens |
|
|
if f_tag == 0.0 and to_tag == 0.0: |
|
|
flag = True |
|
|
text_data.append(text_dict) |
|
|
else: |
|
|
try: |
|
|
n_motion = motion[int(f_tag*20) : int(to_tag*20)] |
|
|
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200): |
|
|
continue |
|
|
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name |
|
|
while new_name in data_dict: |
|
|
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name |
|
|
data_dict[new_name] = {'motion': n_motion, |
|
|
'length': len(n_motion), |
|
|
'text':[text_dict]} |
|
|
new_name_list.append(new_name) |
|
|
length_list.append(len(n_motion)) |
|
|
except: |
|
|
print(line_split) |
|
|
print(line_split[2], line_split[3], f_tag, to_tag, name) |
|
|
|
|
|
if flag: |
|
|
data_dict[name] = {'motion': motion, |
|
|
'length': len(motion), |
|
|
'text': text_data} |
|
|
new_name_list.append(name) |
|
|
length_list.append(len(motion)) |
|
|
except: |
|
|
pass |
|
|
if self.evaluation: |
|
|
self.w_vectorizer = GloVe('./glove', 'our_vab') |
|
|
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1])) |
|
|
else: |
|
|
name_list, length_list = new_name_list, length_list |
|
|
self.mean = mean |
|
|
self.std = std |
|
|
self.length_arr = np.array(length_list) |
|
|
self.data_dict = data_dict |
|
|
self.name_list = name_list |
|
|
if self.evaluation: |
|
|
self.reset_max_len(self.max_length) |
|
|
|
|
|
def reset_max_len(self, length): |
|
|
assert length <= self.max_motion_length |
|
|
self.pointer = np.searchsorted(self.length_arr, length) |
|
|
print("Pointer Pointing at %d"%self.pointer) |
|
|
self.max_length = length |
|
|
|
|
|
def transform(self, data, mean=None, std=None): |
|
|
if mean is None and std is None: |
|
|
return (data - self.mean) / self.std |
|
|
else: |
|
|
return (data - mean) / std |
|
|
|
|
|
def inv_transform(self, data, mean=None, std=None): |
|
|
if mean is None and std is None: |
|
|
return data * self.std + self.mean |
|
|
else: |
|
|
return data * std + mean |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.data_dict) - self.pointer |
|
|
|
|
|
def __getitem__(self, item): |
|
|
idx = self.pointer + item |
|
|
data = self.data_dict[self.name_list[idx]] |
|
|
motion, m_length, text_list = data['motion'], data['length'], data['text'] |
|
|
|
|
|
text_data = random.choice(text_list) |
|
|
caption, tokens = text_data['caption'], text_data['tokens'] |
|
|
|
|
|
if self.evaluation: |
|
|
if len(tokens) < self.max_text_len: |
|
|
|
|
|
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] |
|
|
sent_len = len(tokens) |
|
|
tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len) |
|
|
else: |
|
|
|
|
|
tokens = tokens[:self.max_text_len] |
|
|
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] |
|
|
sent_len = len(tokens) |
|
|
pos_one_hots = [] |
|
|
word_embeddings = [] |
|
|
for token in tokens: |
|
|
word_emb, pos_oh = self.w_vectorizer[token] |
|
|
pos_one_hots.append(pos_oh[None, :]) |
|
|
word_embeddings.append(word_emb[None, :]) |
|
|
pos_one_hots = np.concatenate(pos_one_hots, axis=0) |
|
|
word_embeddings = np.concatenate(word_embeddings, axis=0) |
|
|
|
|
|
if self.unit_length < 10: |
|
|
coin2 = np.random.choice(['single', 'single', 'double']) |
|
|
else: |
|
|
coin2 = 'single' |
|
|
|
|
|
if coin2 == 'double': |
|
|
m_length = (m_length // self.unit_length - 1) * self.unit_length |
|
|
elif coin2 == 'single': |
|
|
m_length = (m_length // self.unit_length) * self.unit_length |
|
|
idx = random.randint(0, len(motion) - m_length) |
|
|
motion = motion[idx:idx+m_length] |
|
|
|
|
|
"Z Normalization" |
|
|
if self.evaluation: |
|
|
motion = motion[:, :self.mean.shape[0]] |
|
|
motion = (motion - self.mean) / self.std |
|
|
|
|
|
if m_length < self.max_motion_length: |
|
|
if self.evaluation: |
|
|
motion = np.concatenate([motion, |
|
|
np.zeros((self.max_motion_length - m_length, motion.shape[1])) |
|
|
], axis=0) |
|
|
else: |
|
|
motion = np.concatenate([motion, |
|
|
np.zeros((self.max_motion_length - m_length, motion.shape[1], motion.shape[2])) |
|
|
], axis=0) |
|
|
elif m_length > self.max_motion_length: |
|
|
if not self.evaluation: |
|
|
idx = random.randint(0, m_length - self.max_motion_length) |
|
|
motion = motion[idx:idx + self.max_motion_length] |
|
|
if self.evaluation: |
|
|
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens) |
|
|
else: |
|
|
return caption, motion, m_length |