sourxbhh's picture
Initial deployment: ACMDM Motion Generation
82a6034
import os
import numpy as np
from scipy import linalg
from scipy.ndimage import uniform_filter1d
import torch
from utils.motion_process import recover_from_ric
from utils.back_process import back_process
from tqdm import tqdm
#################################################################################
# Eval Function Loops #
#################################################################################
@torch.no_grad()
def evaluation_ae(out_dir, val_loader, net, writer, ep, eval_wrapper, device, best_fid=1000, best_div=0,
best_top1=0, best_top2=0, best_top3=0, best_matching=100,
eval_mean=None, eval_std=None, save=True, draw=True):
net.eval()
motion_annotation_list = []
motion_pred_list = []
R_precision_real = 0
R_precision = 0
nb_sample = 0
matching_score_real = 0
matching_score_pred = 0
mpjpe = 0
num_poses = 0
for batch in tqdm(val_loader):
word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token = batch
bs, seq = motion.shape[0], motion.shape[1]
gt = val_loader.dataset.inv_transform(motion.detach().cpu().numpy())
bgt = []
for j in range(bs):
bgt.append(back_process(gt[j], is_mesh=False))
bgt = np.stack(bgt, axis=0)
bgt = val_loader.dataset.transform(bgt, eval_mean, eval_std)
bgt = torch.from_numpy(bgt).to(device)
(et, em), (_, _) = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, caption, bgt, m_length-1)
motion = motion.float().to(device)
with torch.no_grad():
pred_pose_eval = net.forward(motion)
pred = val_loader.dataset.inv_transform(pred_pose_eval.detach().cpu().numpy())
bpred = []
for j in range(bs):
bpred.append(back_process(pred[j], is_mesh=False))
bpred = np.stack(bpred, axis=0)
bpred = val_loader.dataset.transform(bpred, eval_mean, eval_std)
(et_pred, em_pred), (_, _) = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, caption,
torch.from_numpy(bpred).to(device), m_length-1)
for i in range(bs):
gtt = torch.from_numpy(gt[i, :m_length[i]]).float().reshape(-1, 22, 3)
predd = torch.from_numpy(pred[i, :m_length[i]]).float().reshape(-1, 22, 3)
mpjpe += torch.sum(calculate_mpjpe(gtt, predd))
num_poses += gt.shape[0]
motion_pred_list.append(em_pred)
motion_annotation_list.append(em)
temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
R_precision_real += temp_R
matching_score_real += temp_match
temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov = calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
mpjpe = mpjpe / num_poses
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = "--> \t Eva. Re %d:, FID. %.4f, Diversity Real. %.4f, Diversity. %.4f, R_precision_real. (%.4f, %.4f, %.4f), R_precision. (%.4f, %.4f, %.4f), matching_real. %.4f, matching_pred. %.4f, MPJPE. %.4f" % \
(ep, fid, diversity_real, diversity, R_precision_real[0], R_precision_real[1], R_precision_real[2],
R_precision[0], R_precision[1], R_precision[2], matching_score_real, matching_score_pred, mpjpe)
print(msg)
if draw:
writer.add_scalar('./Test/FID', fid, ep)
writer.add_scalar('./Test/Diversity', diversity, ep)
writer.add_scalar('./Test/top1', R_precision[0], ep)
writer.add_scalar('./Test/top2', R_precision[1], ep)
writer.add_scalar('./Test/top3', R_precision[2], ep)
writer.add_scalar('./Test/matching_score', matching_score_pred, ep)
if fid < best_fid:
msg = "--> --> \t FID Improved from %.5f to %.5f !!!" % (best_fid, fid)
if draw: print(msg)
best_fid = fid
if save:
torch.save({'ae': net.state_dict(), 'ep': ep}, os.path.join(out_dir, 'net_best_fid.tar'))
if abs(diversity_real - diversity) < abs(diversity_real - best_div):
msg = "--> --> \t Diversity Improved from %.5f to %.5f !!!"%(best_div, diversity)
if draw: print(msg)
best_div = diversity
if R_precision[0] > best_top1:
msg = "--> --> \t Top1 Improved from %.5f to %.5f !!!" % (best_top1, R_precision[0])
if draw: print(msg)
best_top1 = R_precision[0]
if R_precision[1] > best_top2:
msg = "--> --> \t Top2 Improved from %.5f to %.5f!!!" % (best_top2, R_precision[1])
if draw: print(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3:
msg = "--> --> \t Top3 Improved from %.5f to %.5f !!!" % (best_top3, R_precision[2])
if draw: print(msg)
best_top3 = R_precision[2]
if matching_score_pred < best_matching:
msg = f"--> --> \t matching_score Improved from %.5f to %.5f !!!" % (best_matching, matching_score_pred)
if draw: print(msg)
best_matching = matching_score_pred
net.train()
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, mpjpe, writer
@torch.no_grad()
def evaluation_acmdm(out_dir, val_loader, ema_acmdm, ae, writer, ep, best_fid, best_div,
best_top1, best_top2, best_top3, best_matching, eval_wrapper, device, clip_score_old,
cond_scale=None, cal_mm=False, eval_mean=None, eval_std=None, after_mean=None, after_std=None, mesh_mean=None, mesh_std=None,
draw=True,
is_raw=False,
is_prefix=False,
is_control=False, index=[0], intensity=100,
is_mesh=False):
ema_acmdm.eval()
if not is_raw:
ae.eval()
save=False
motion_annotation_list = []
motion_pred_list = []
motion_multimodality = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
multimodality = 0
if cond_scale is None:
if "kit" in out_dir:
cond_scale = 2.5
else:
cond_scale = 2.5
clip_score_real = 0
clip_score_gt = 0
skate_ratio_sum = 0
dist_sum = 0
traj_err = []
nb_sample = 0
if cal_mm:
num_mm_batch = 3
else:
num_mm_batch = 0
for i, batch in enumerate(tqdm(val_loader)):
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
m_length = m_length.to(device)
bs, seq = pose.shape[:2]
if i < num_mm_batch:
motion_multimodality_batch = []
batch_clip_score_pred = 0
for _ in tqdm(range(30)):
pred_latents = ema_acmdm.generate(clip_text, m_length//4 if not is_raw else m_length, cond_scale)
if not is_raw:
pred_latents = val_loader.dataset.inv_transform(pred_latents.permute(0, 2, 3, 1).detach().cpu().numpy(),
after_mean, after_std)
pred_latents = torch.from_numpy(pred_latents).to(device)
with torch.no_grad():
pred_motions = ae.decode(pred_latents.permute(0,3,1,2))
else:
pred_motions = pred_latents.permute(0, 2, 3, 1)
pred_motions = val_loader.dataset.inv_transform(pred_motions.detach().cpu().numpy())
pred_motionss = []
for j in range(bs):
pred_motionss.append(back_process(pred_motions[j], is_mesh=is_mesh))
pred_motionss = np.stack(pred_motionss, axis=0)
pred_motions = val_loader.dataset.transform(pred_motionss, eval_mean, eval_std)
(et_pred, em_pred), (et_pred_clip, em_pred_clip) = eval_wrapper.get_co_embeddings(word_embeddings,
pos_one_hots,
sent_len,
clip_text,
torch.from_numpy(
pred_motions).to(
device),
m_length - 1)
motion_multimodality_batch.append(em_pred.unsqueeze(1))
motion_multimodality_batch = torch.cat(motion_multimodality_batch, dim=1) #(bs, 30, d)
motion_multimodality.append(motion_multimodality_batch)
for j in range(bs):
single_em = em_pred_clip[j]
single_et = et_pred_clip[j]
clip_score = (single_em @ single_et.T).item()
batch_clip_score_pred += clip_score
clip_score_real += batch_clip_score_pred
else:
if is_control:
pred_latents, mask_hint = ema_acmdm.generate_control(clip_text, m_length//4, pose.clone().float().to(device).permute(0,3,1,2), index, intensity,
cond_scale)
mask_hint = mask_hint.permute(0, 2, 3, 1).cpu().numpy()
elif is_prefix:
motion = pose.clone().float().to(device)
with torch.no_grad():
motion = ae.encode(motion)
amean = torch.from_numpy(after_mean).to(device)
astd = torch.from_numpy(after_std).to(device)
motion = ((motion.permute(0,2,3,1)-amean)/astd).permute(0,3,1,2)
pred_latents = ema_acmdm.generate(clip_text, m_length // 4, cond_scale, motion[:, :, :5, :]) # 20+40 style
else:
pred_latents = ema_acmdm.generate(clip_text, m_length//4 if not (is_raw or is_mesh) else m_length, cond_scale, j=22 if not is_mesh else 28)
if not is_raw:
pred_latents = val_loader.dataset.inv_transform(pred_latents.permute(0,2,3,1).detach().cpu().numpy(), after_mean, after_std)
pred_latents = torch.from_numpy(pred_latents).to(device)
with torch.no_grad():
if not is_mesh:
pred_latents = pred_latents.permute(0, 3, 1, 2)
pred_motions = ae.decode(pred_latents)
else:
pred_motions = pred_latents.permute(0, 2, 3, 1)
if not is_mesh:
pred_motions = val_loader.dataset.inv_transform(pred_motions.detach().cpu().numpy())
else:
pred_motions = val_loader.dataset.inv_transform(pred_motions.detach().cpu().numpy(), mesh_mean, mesh_std)
J_regressor = np.load('body_models/J_regressor.npy')
pred_motions = np.einsum('jk,btkc->btjc', J_regressor, pred_motions)[:, :, :22]
if is_control:
# foot skate
skate_ratio, skate_vel = calculate_skating_ratio(torch.from_numpy(pred_motions.transpose(0,2,3,1))) # [batch_size]
skate_ratio_sum += skate_ratio.sum()
# control errors
hint = val_loader.dataset.inv_transform(pose.clone().detach().cpu().numpy())
hint = hint * mask_hint
for i, (mot, h, mask) in enumerate(zip(pred_motions, hint, mask_hint)):
control_error = control_l2(np.expand_dims(mot, axis=0), np.expand_dims(h, axis=0),
np.expand_dims(mask, axis=0))
mean_error = control_error.sum() / mask.sum()
dist_sum += mean_error
control_error = control_error.reshape(-1)
mask = mask.reshape(-1)
err_np = calculate_trajectory_error(control_error, mean_error, mask)
traj_err.append(err_np)
pred_motionss = []
for j in range(bs):
pred_motionss.append(back_process(pred_motions[j], is_mesh=is_mesh))
pred_motionss = np.stack(pred_motionss, axis=0)
pred_motions = val_loader.dataset.transform(pred_motionss, eval_mean, eval_std)
(et_pred, em_pred), (et_pred_clip, em_pred_clip) = eval_wrapper.get_co_embeddings(word_embeddings,
pos_one_hots, sent_len,
clip_text,
torch.from_numpy(pred_motions).to(device),
m_length-1)
batch_clip_score_pred = 0
for j in range(bs):
single_em = em_pred_clip[j]
single_et = et_pred_clip[j]
clip_score = (single_em @ single_et.T).item()
batch_clip_score_pred += clip_score
clip_score_real += batch_clip_score_pred
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
poses = []
for j in range(bs):
poses.append(back_process(pose[j], is_mesh=False))
poses = np.stack(poses, axis=0)
pose = val_loader.dataset.transform(poses, eval_mean, eval_std)
pose = torch.from_numpy(pose).cuda().float()
pose = pose.cuda().float()
(et, em), (et_clip, em_clip) = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, clip_text,
pose.clone(), m_length-1)
batch_clip_score = 0
for j in range(bs):
single_em = em_clip[j]
single_et = et_clip[j]
clip_score = (single_em @ single_et.T).item()
batch_clip_score += clip_score
clip_score_gt += batch_clip_score
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
R_precision_real += temp_R
matching_score_real += temp_match
temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov = calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
clip_score_real = clip_score_real / nb_sample
clip_score_gt = clip_score_gt / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
if is_control:
# l2 dist
dist_mean = dist_sum / nb_sample
# Skating evaluation
skating_score = skate_ratio_sum / nb_sample
### For trajecotry evaluation from GMD ###
traj_err = np.stack(traj_err).mean(0)
if cal_mm:
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
multimodality = calculate_multimodality(motion_multimodality, 10)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = (f"--> \t Eva. Ep/Re {ep} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity."
f" {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision},"
f" matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
f" multimodality. {multimodality:.4f}, clip score. {clip_score_real}"
+ (f" foot skating. {skating_score:.4f}, traj error. {traj_err[1].item():.4f}, pos error. {traj_err[3].item():.4f}, avg error. {traj_err[4].item():.4f}"
if is_control else ""))
print(msg)
if draw:
writer.add_scalar('./Test/FID', fid, ep)
writer.add_scalar('./Test/Diversity', diversity, ep)
writer.add_scalar('./Test/top1', R_precision[0], ep)
writer.add_scalar('./Test/top2', R_precision[1], ep)
writer.add_scalar('./Test/top3', R_precision[2], ep)
writer.add_scalar('./Test/matching_score', matching_score_pred, ep)
writer.add_scalar('./Test/clip_score', clip_score_real, ep)
if fid < best_fid:
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
if draw: print(msg)
best_fid, best_ep = fid, ep
save=True
if matching_score_pred < best_matching:
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
if draw: print(msg)
best_matching = matching_score_pred
if abs(diversity_real - diversity) < abs(diversity_real - best_div):
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
if draw: print(msg)
best_div = diversity
if R_precision[0] > best_top1:
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
if draw: print(msg)
best_top1 = R_precision[0]
if R_precision[1] > best_top2:
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
if draw: print(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3:
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
if draw: print(msg)
best_top3 = R_precision[2]
if clip_score_real > clip_score_old:
msg = f"--> --> \t CLIP-score Improved from {clip_score_old:.4f} to {clip_score_real:.4f} !!!"
if draw: print(msg)
clip_score_old = clip_score_real
if cal_mm:
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, multimodality, clip_score_old, writer, save
else:
if is_control:
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, 0, clip_score_old, writer, save, dist_mean, skating_score, traj_err
else:
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, 0, clip_score_old, writer, save, None, None, None
@torch.no_grad()
def evaluation_acmdm_another_v(out_dir, val_loader, ema_acmdm, ae, writer, ep, best_fid, best_div,
best_top1, best_top2, best_top3, best_matching, eval_wrapper, device, clip_score_old,
cond_scale=None, cal_mm=False, train_mean=None, train_std=None, after_mean=None, after_std=None,
draw=True,
is_raw=False,
is_prefix=False,
is_control=False, index=[0], intensity=100,
is_mesh=False):
ema_acmdm.eval()
if not is_raw:
ae.eval()
save=False
motion_annotation_list = []
motion_pred_list = []
motion_multimodality = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
multimodality = 0
if cond_scale is None:
if "kit" in out_dir:
cond_scale = 2.5
else:
cond_scale = 2.5
clip_score_real = 0
clip_score_gt = 0
skate_ratio_sum = 0
dist_sum = 0
traj_err = []
nb_sample = 0
if cal_mm:
num_mm_batch = 3
else:
num_mm_batch = 0
for i, batch in enumerate(tqdm(val_loader)):
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
m_length = m_length.to(device)
bs, seq = pose.shape[:2]
if i < num_mm_batch:
motion_multimodality_batch = []
batch_clip_score_pred = 0
for _ in tqdm(range(30)):
pred_latents = ema_acmdm.generate(clip_text, m_length//4 if not is_raw else m_length, cond_scale)
if not is_raw:
pred_latents = val_loader.dataset.inv_transform(pred_latents.permute(0, 2, 3, 1).detach().cpu().numpy(),
after_mean, after_std)
pred_latents = torch.from_numpy(pred_latents).to(device)
with torch.no_grad():
pred_motions = ae.decode(pred_latents.permute(0,3,1,2))
else:
pred_motions = pred_latents.permute(0, 2, 3, 1)
pred_motions = val_loader.dataset.inv_transform(pred_motions.detach().cpu().numpy(), train_mean, train_std)
pred_motionss = []
for j in range(bs):
pred_motionss.append(back_process(pred_motions[j], is_mesh=is_mesh))
pred_motionss = np.stack(pred_motionss, axis=0)
pred_motions = val_loader.dataset.transform(pred_motionss)
(et_pred, em_pred), (et_pred_clip, em_pred_clip) = eval_wrapper.get_co_embeddings(word_embeddings,
pos_one_hots,
sent_len,
clip_text,
torch.from_numpy(
pred_motions).to(
device),
m_length - 1)
motion_multimodality_batch.append(em_pred.unsqueeze(1))
motion_multimodality_batch = torch.cat(motion_multimodality_batch, dim=1) #(bs, 30, d)
motion_multimodality.append(motion_multimodality_batch)
for j in range(bs):
single_em = em_pred_clip[j]
single_et = et_pred_clip[j]
clip_score = (single_em @ single_et.T).item()
batch_clip_score_pred += clip_score
clip_score_real += batch_clip_score_pred
else:
if is_control:
bgt = val_loader.dataset.inv_transform(pose.clone())
motion_gt = []
for j in range(bs):
motion_gt.append(recover_from_ric(bgt[j].float(), 22).numpy())
motion_gt = np.stack(motion_gt, axis=0)
motion = val_loader.dataset.transform(motion_gt, train_mean, train_std)
motion = torch.from_numpy(motion).float().to(device)
pred_latents, mask_hint = ema_acmdm.generate_control(clip_text, m_length//4, motion.clone().permute(0,3,1,2), index, intensity,
cond_scale)
mask_hint = mask_hint.permute(0, 2, 3, 1).cpu().numpy()
elif is_prefix:
bgt = val_loader.dataset.inv_transform(pose.clone())
motion_gt = []
for j in range(bs):
motion_gt.append(recover_from_ric(bgt[j].float(), 22).numpy())
motion_gt = np.stack(motion_gt, axis=0)
motion = val_loader.dataset.transform(motion_gt, train_mean, train_std)
motion = torch.from_numpy(motion).float().to(device)
with torch.no_grad():
motion = ae.encode(motion)
amean = torch.from_numpy(after_mean).to(device)
astd = torch.from_numpy(after_std).to(device)
motion = ((motion.permute(0,2,3,1)-amean)/astd).permute(0,3,1,2)
pred_latents = ema_acmdm.generate(clip_text, m_length // 4, cond_scale, motion[:, :, :5, :]) # 20+40 style
else:
pred_latents = ema_acmdm.generate(clip_text, m_length//4 if not is_raw else m_length, cond_scale)
if not is_raw:
pred_latents = val_loader.dataset.inv_transform(pred_latents.permute(0,2,3,1).detach().cpu().numpy(), after_mean, after_std)
pred_latents = torch.from_numpy(pred_latents).to(device)
with torch.no_grad():
pred_motions = ae.decode(pred_latents.permute(0,3,1,2))
else:
pred_motions = pred_latents.permute(0, 2, 3, 1)
pred_motions = val_loader.dataset.inv_transform(pred_motions.detach().cpu().numpy(), train_mean, train_std)
if is_control:
# foot skate
skate_ratio, skate_vel = calculate_skating_ratio(torch.from_numpy(pred_motions.transpose(0,2,3,1))) # [batch_size]
skate_ratio_sum += skate_ratio.sum()
# control errors
hint = motion_gt * mask_hint
for i, (mot, h, mask) in enumerate(zip(pred_motions, hint, mask_hint)):
control_error = control_l2(np.expand_dims(mot, axis=0), np.expand_dims(h, axis=0),
np.expand_dims(mask, axis=0))
mean_error = control_error.sum() / mask.sum()
dist_sum += mean_error
control_error = control_error.reshape(-1)
mask = mask.reshape(-1)
err_np = calculate_trajectory_error(control_error, mean_error, mask)
traj_err.append(err_np)
pred_motionss = []
for j in range(bs):
pred_motionss.append(back_process(pred_motions[j], is_mesh=is_mesh))
pred_motionss = np.stack(pred_motionss, axis=0)
pred_motions = val_loader.dataset.transform(pred_motionss)
(et_pred, em_pred), (et_pred_clip, em_pred_clip) = eval_wrapper.get_co_embeddings(word_embeddings,
pos_one_hots, sent_len,
clip_text,
torch.from_numpy(pred_motions).to(device),
m_length-1)
batch_clip_score_pred = 0
for j in range(bs):
single_em = em_pred_clip[j]
single_et = et_pred_clip[j]
clip_score = (single_em @ single_et.T).item()
batch_clip_score_pred += clip_score
clip_score_real += batch_clip_score_pred
pose = pose.cuda().float()
(et, em), (et_clip, em_clip) = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, clip_text,
pose.clone(), m_length-1)
batch_clip_score = 0
for j in range(bs):
single_em = em_clip[j]
single_et = et_clip[j]
clip_score = (single_em @ single_et.T).item()
batch_clip_score += clip_score
clip_score_gt += batch_clip_score
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
R_precision_real += temp_R
matching_score_real += temp_match
temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov = calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
clip_score_real = clip_score_real / nb_sample
clip_score_gt = clip_score_gt / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
if is_control:
# l2 dist
dist_mean = dist_sum / nb_sample
# Skating evaluation
skating_score = skate_ratio_sum / nb_sample
### For trajecotry evaluation from GMD ###
traj_err = np.stack(traj_err).mean(0)
if cal_mm:
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
multimodality = calculate_multimodality(motion_multimodality, 10)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = (f"--> \t Eva. Ep/Re {ep} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity."
f" {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision},"
f" matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
f" multimodality. {multimodality:.4f}, clip score. {clip_score_real}"
+ (f" foot skating. {skating_score:.4f}, traj error. {traj_err[1].item():.4f}, loc error. {traj_err[3].item():.4f}, avg error. {traj_err[4].item():.4f}"
if is_control else ""))
print(msg)
if draw:
writer.add_scalar('./Test/FID', fid, ep)
writer.add_scalar('./Test/Diversity', diversity, ep)
writer.add_scalar('./Test/top1', R_precision[0], ep)
writer.add_scalar('./Test/top2', R_precision[1], ep)
writer.add_scalar('./Test/top3', R_precision[2], ep)
writer.add_scalar('./Test/matching_score', matching_score_pred, ep)
writer.add_scalar('./Test/clip_score', clip_score_real, ep)
if fid < best_fid:
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
if draw: print(msg)
best_fid, best_ep = fid, ep
save=True
if matching_score_pred < best_matching:
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
if draw: print(msg)
best_matching = matching_score_pred
if abs(diversity_real - diversity) < abs(diversity_real - best_div):
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
if draw: print(msg)
best_div = diversity
if R_precision[0] > best_top1:
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
if draw: print(msg)
best_top1 = R_precision[0]
if R_precision[1] > best_top2:
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
if draw: print(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3:
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
if draw: print(msg)
best_top3 = R_precision[2]
if clip_score_real > clip_score_old:
msg = f"--> --> \t CLIP-score Improved from {clip_score_old:.4f} to {clip_score_real:.4f} !!!"
if draw: print(msg)
clip_score_old = clip_score_real
if cal_mm:
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, multimodality, clip_score_old, writer, save
else:
if is_control:
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, 0, clip_score_old, writer, save, dist_mean, skating_score, traj_err
else:
return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, 0, clip_score_old, writer, save, None, None, None
#################################################################################
# Util Functions #
#################################################################################
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
#################################################################################
# Metrics #
#################################################################################
def calculate_mpjpe(gt_joints, pred_joints):
"""
gt_joints: num_poses x num_joints(22) x 3
pred_joints: num_poses x num_joints(22) x 3
(obtained from recover_from_ric())
"""
assert gt_joints.shape == pred_joints.shape, f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}"
# Align by root (pelvis)
pelvis = gt_joints[:, [0]].mean(1)
gt_joints = gt_joints - torch.unsqueeze(pelvis, dim=1)
pelvis = pred_joints[:, [0]].mean(1)
pred_joints = pred_joints - torch.unsqueeze(pelvis, dim=1)
# Compute MPJPE
mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints=22
mpjpe_seq = mpjpe.mean(-1) # num_poses
return mpjpe_seq
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1, matrix2):
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dist: N1 x N2
dist[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
dists = np.sqrt(d1 + d2 + d3) # broadcasting
return dists
def calculate_top_k(mat, top_k):
size = mat.shape[0]
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
bool_mat = (mat == gt_mat)
correct_vec = False
top_k_list = []
for i in range(top_k):
# print(correct_vec, bool_mat[:, i])
correct_vec = (correct_vec | bool_mat[:, i])
# print(correct_vec)
top_k_list.append(correct_vec[:, None])
top_k_mat = np.concatenate(top_k_list, axis=1)
return top_k_mat
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
dist_mat = euclidean_distance_matrix(embedding1, embedding2)
argmax = np.argsort(dist_mat, axis=1)
top_k_mat = calculate_top_k(argmax, top_k)
if sum_all:
return top_k_mat.sum(axis=0)
else:
return top_k_mat
def calculate_matching_score(embedding1, embedding2, sum_all=False):
assert len(embedding1.shape) == 2
assert embedding1.shape[0] == embedding2.shape[0]
assert embedding1.shape[1] == embedding2.shape[1]
dist = linalg.norm(embedding1 - embedding2, axis=1)
if sum_all:
return dist.sum(axis=0)
else:
return dist
def calculate_activation_statistics(activations):
"""
Params:
-- activation: num_samples x dim_feat
Returns:
-- mu: dim_feat
-- sigma: dim_feat x dim_feat
"""
mu = np.mean(activations, axis=0)
cov = np.cov(activations, rowvar=False)
return mu, cov
def calculate_diversity(activation, diversity_times):
assert len(activation.shape) == 2
assert activation.shape[0] > diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
return dist.mean()
def calculate_multimodality(activation, multimodality_times):
assert len(activation.shape) == 3
assert activation.shape[1] > multimodality_times
num_per_sent = activation.shape[1]
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
return dist.mean()
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
# directly from omnicontrol
def calculate_skating_ratio(motions):
thresh_height = 0.05 # 10
fps = 20.0
thresh_vel = 0.50 # 20 cm /s
avg_window = 5 # frames
batch_size = motions.shape[0]
# 10 left, 11 right foot. XZ plane, y up
# motions [bs, 22, 3, max_len]
verts_feet = motions[:, [10, 11], :, :].detach().cpu().numpy() # [bs, 2, 3, max_len]
verts_feet_plane_vel = np.linalg.norm(verts_feet[:, :, [0, 2], 1:] - verts_feet[:, :, [0, 2], :-1],
axis=2) * fps # [bs, 2, max_len-1]
# [bs, 2, max_len-1]
vel_avg = uniform_filter1d(verts_feet_plane_vel, axis=-1, size=avg_window, mode='constant', origin=0)
verts_feet_height = verts_feet[:, :, 1, :] # [bs, 2, max_len]
# If feet touch ground in agjecent frames
feet_contact = np.logical_and((verts_feet_height[:, :, :-1] < thresh_height),
(verts_feet_height[:, :, 1:] < thresh_height)) # [bs, 2, max_len - 1]
# skate velocity
skate_vel = feet_contact * vel_avg
# it must both skating in the current frame
skating = np.logical_and(feet_contact, (verts_feet_plane_vel > thresh_vel))
# and also skate in the windows of frames
skating = np.logical_and(skating, (vel_avg > thresh_vel))
# Both feet slide
skating = np.logical_or(skating[:, 0, :], skating[:, 1, :]) # [bs, max_len -1]
skating_ratio = np.sum(skating, axis=1) / skating.shape[1]
return skating_ratio, skate_vel
# directly from omnicontrol
def control_l2(motion, hint, hint_mask):
# motion: b, seq, 22, 3
# hint: b, seq, 22, 1
loss = np.linalg.norm((motion - hint) * hint_mask, axis=-1)
return loss
# directly from omnicontrol
def calculate_trajectory_error(dist_error, mean_err_traj, mask, strict=True):
''' dist_error shape [5]: error for each kps in metre
Two threshold: 20 cm and 50 cm.
If mean error in sequence is more then the threshold, fails
return: traj_fail(0.2), traj_fail(0.5), all_kps_fail(0.2), all_kps_fail(0.5), all_mean_err.
Every metrics are already averaged.
'''
# mean_err_traj = dist_error.mean(1)
if strict:
# Traj fails if any of the key frame fails
traj_fail_02 = 1.0 - (dist_error <= 0.2).all()
traj_fail_05 = 1.0 - (dist_error <= 0.5).all()
else:
# Traj fails if the mean error of all keyframes more than the threshold
traj_fail_02 = (mean_err_traj > 0.2)
traj_fail_05 = (mean_err_traj > 0.5)
all_fail_02 = (dist_error > 0.2).sum() / mask.sum()
all_fail_05 = (dist_error > 0.5).sum() / mask.sum()
return np.array([traj_fail_02, traj_fail_05, all_fail_02, all_fail_05, dist_error.sum() / mask.sum()])