Spaces:
Running
Running
File size: 43,256 Bytes
33d8b39 f9bcb56 1a1c26f 33d8b39 9a6eae1 33d8b39 f9bcb56 468cfed 869f1a1 9a6eae1 869f1a1 9a6eae1 33d8b39 869f1a1 33d8b39 1a1c26f 33d8b39 9a6eae1 33d8b39 f9bcb56 869f1a1 33d8b39 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 1773769 869f1a1 1773769 869f1a1 1773769 1a1c26f edcea58 46d6b1b e10bdac 1a1c26f 869f1a1 1a1c26f edcea58 1a1c26f 869f1a1 46d6b1b 869f1a1 1773769 edcea58 46d6b1b e10bdac 46d6b1b edcea58 e10bdac edcea58 46d6b1b edcea58 46d6b1b e10bdac edcea58 46d6b1b edcea58 46d6b1b e10bdac 9187593 e10bdac edcea58 46d6b1b e10bdac 46d6b1b edcea58 46d6b1b edcea58 e10bdac 46d6b1b edcea58 46d6b1b edcea58 46d6b1b edcea58 e10bdac 46d6b1b e10bdac 46d6b1b edcea58 46d6b1b edcea58 e10bdac 46d6b1b e10bdac 46d6b1b e10bdac 46d6b1b e10bdac 46d6b1b edcea58 46d6b1b edcea58 1773769 edcea58 46d6b1b 869f1a1 edcea58 869f1a1 1a1c26f 869f1a1 1a1c26f edcea58 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 869f1a1 1a1c26f 33d8b39 869f1a1 33d8b39 1a1c26f 33d8b39 1a1c26f 33d8b39 869f1a1 33d8b39 1a1c26f 33d8b39 869f1a1 33d8b39 869f1a1 33d8b39 48fbd23 33d8b39 48fbd23 33d8b39 48fbd23 869f1a1 48fbd23 33d8b39 869f1a1 48fbd23 33d8b39 869f1a1 48fbd23 33d8b39 9082c5a 33d8b39 869f1a1 33d8b39 869f1a1 9a6eae1 33d8b39 48fbd23 869f1a1 48fbd23 33d8b39 869f1a1 33d8b39 869f1a1 33d8b39 48fbd23 33d8b39 1a1c26f 33d8b39 1a1c26f 33d8b39 48fbd23 9082c5a 48fbd23 33d8b39 48fbd23 869f1a1 33d8b39 48fbd23 33d8b39 48fbd23 33d8b39 9a6eae1 33d8b39 1a1c26f 33d8b39 869f1a1 33d8b39 48fbd23 869f1a1 33d8b39 f9bcb56 33d8b39 1a1c26f 48fbd23 1a1c26f 33d8b39 869f1a1 48fbd23 33d8b39 48fbd23 9a6eae1 6d974a3 869f1a1 9a6eae1 6d974a3 9a6eae1 33d8b39 6d974a3 33d8b39 6d974a3 13233ee 6d974a3 468cfed 6d974a3 9a6eae1 6d974a3 48fbd23 6d974a3 9a6eae1 6d974a3 9a6eae1 6d974a3 9a6eae1 33d8b39 48fbd23 72acd30 48fbd23 33d8b39 9a6eae1 869f1a1 33d8b39 48fbd23 1a1c26f 869f1a1 48fbd23 1a1c26f 48fbd23 33d8b39 48fbd23 33d8b39 48fbd23 33d8b39 48fbd23 33d8b39 48fbd23 33d8b39 869f1a1 33d8b39 48fbd23 33d8b39 9a6eae1 869f1a1 9a6eae1 33d8b39 9a6eae1 869f1a1 9a6eae1 869f1a1 9a6eae1 869f1a1 9a6eae1 33d8b39 f9bcb56 869f1a1 f9bcb56 869f1a1 f9bcb56 869f1a1 f9bcb56 33d8b39 48fbd23 33d8b39 869f1a1 33d8b39 869f1a1 9a6eae1 869f1a1 9a6eae1 869f1a1 9a6eae1 869f1a1 9a6eae1 869f1a1 9a6eae1 33d8b39 869f1a1 33d8b39 869f1a1 48fbd23 33d8b39 1a1c26f 869f1a1 33d8b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 |
import os
import io
import zipfile
import re
import difflib
import tempfile
import uuid
from typing import List, Optional, Dict, Any
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from langdetect import detect
from transformers import MarianMTModel, MarianTokenizer
from openai import OpenAI
# ---- Postgres (Neon) ----
import psycopg2
from psycopg2 import sql as pgsql
# ---- Supabase ----
from supabase import create_client, Client
SUPABASE_URL = "https://bnvmqgjawtaslczewqyd.supabase.co"
SUPABASE_ANON_KEY = (
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImJudm1x"
"Z2phd3Rhc2xjemV3cXlkIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NjQ0NjM5NDAsImV4cCI6MjA4"
"MDAzOTk0MH0.9zkyqrsm-QOSwMTUPZEWqyFeNpbbuar01rB7pmObkUI"
)
supabase: Client = create_client(SUPABASE_URL, SUPABASE_ANON_KEY)
# ======================================================
# 0) Configuración general de paths / modelo / OpenAI
# ======================================================
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_DIR = os.getenv("MODEL_DIR", "stvnnnnnn/t5-large-nl2sql-spider")
DEVICE = torch.device("cpu")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
openai_client = OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None
# DSN de Neon (Postgres) – EJEMPLO:
# postgres://user:pass@host/neondb?sslmode=require
POSTGRES_DSN = os.getenv("POSTGRES_DSN")
if not POSTGRES_DSN:
raise RuntimeError(
"⚠️ POSTGRES_DSN no está definido. "
"Configúralo en los secrets del Space con la cadena de conexión de Neon."
)
# ======================================================
# 1) Gestor de conexiones dinámicas: Postgres (Neon)
# ======================================================
class PostgresManager:
"""
Cada upload crea un *schema* aislado en Neon.
connections[connection_id] = {
"label": str, # nombre de archivo original
"engine": "postgres",
"schema": str # nombre del schema en Neon
}
"""
def __init__(self, dsn: str):
self.dsn = dsn
self.connections: Dict[str, Dict[str, Any]] = {}
# ---------- utilidades internas ----------
def _new_connection_id(self) -> str:
return f"db_{uuid.uuid4().hex[:8]}"
def _get_info(self, connection_id: str) -> Dict[str, Any]:
if connection_id not in self.connections:
raise KeyError(f"connection_id '{connection_id}' no registrado")
return self.connections[connection_id]
def _get_conn(self, autocommit: bool = True):
conn = psycopg2.connect(self.dsn)
conn.autocommit = autocommit
return conn
def _execute_pg_dump(self, cur, sql_text: str) -> None:
"""
Ejecuta un script tipo pg_dump:
- Ejecuta DDL/INSERTs normales con execute
- Maneja bloques:
COPY tabla (...) FROM stdin;
datos...
\.
usando copy_expert.
"""
lines = sql_text.splitlines()
n = len(lines)
i = 0
buffer: List[str] = []
def flush_buffer():
stmt = "\n".join(buffer).strip()
if not stmt:
return
# Partimos por ';' para ejecutar cada sentencia
for piece in stmt.split(";"):
piece = piece.strip()
if piece:
cur.execute(piece)
while i < n:
line = lines[i]
# ¿Inicio de bloque COPY ... FROM stdin; ?
if re.match(r"^\s*copy\s+.+from\s+stdin;?\s*$", line, re.IGNORECASE):
# Ejecutar lo acumulado antes del COPY
flush_buffer()
buffer = []
copy_sql = line.strip()
i += 1
data_lines: List[str] = []
# Acumular las filas hasta encontrar '\.'
while i < n and lines[i].strip() != r"\.":
data_lines.append(lines[i])
i += 1
# Saltar la línea '\.' si existe
if i < n and lines[i].strip() == r"\.":
i += 1
data_str = "\n".join(data_lines) + "\n"
# Ejecutar el COPY con los datos
cur.copy_expert(copy_sql, io.StringIO(data_str))
else:
buffer.append(line)
i += 1
# Ejecutar lo que quede al final
flush_buffer()
# ---------- creación de BD desde dump ----------
def create_database_from_dump(self, label: str, sql_text: str) -> str:
"""
Crea un schema aislado en Neon y restaura dentro de él
un dump de Postgres tipo psql (con COPY FROM stdin, funciones, etc.).
NOTA:
- Ignoramos bloques CREATE FUNCTION ... $$ ... $$ (no los necesitamos
para hacer SELECT sobre las tablas).
- Ignoramos errores tipo “already exists” para que no reviente si
el script crea dos veces la misma tabla/índice.
- Ignoramos sentencias que cambian OWNER a 'postgres'.
"""
connection_id = self._new_connection_id()
schema_name = f"sess_{uuid.uuid4().hex[:8]}"
conn = self._get_conn()
try:
with conn.cursor() as cur:
# 1) Crear schema aislado y fijar search_path
cur.execute(
pgsql.SQL("CREATE SCHEMA {}").format(
pgsql.Identifier(schema_name)
)
)
cur.execute(
pgsql.SQL("SET search_path TO {}").format(
pgsql.Identifier(schema_name)
)
)
in_copy = False
copy_sql = ""
copy_rows: list[str] = []
# NUEVO: estado para funciones
in_function = False
function_delim: str | None = None
function_delim_count: int = 0
stmt_lines: list[str] = []
def flush_statement():
"""Ejecuta el statement acumulado si es útil."""
nonlocal stmt_lines
stmt = "\n".join(stmt_lines).strip()
stmt_lines.clear()
if not stmt or stmt == ";":
return
upper = stmt.upper()
# Saltar cosas globales/peligrosas
skip_prefixes = (
"SET ",
"SELECT PG_CATALOG.SET_CONFIG",
"COMMENT ON EXTENSION",
"DROP DATABASE",
"CREATE DATABASE",
"ALTER DATABASE",
"REVOKE ",
"GRANT ",
"BEGIN",
"COMMIT",
"ROLLBACK",
)
if upper.startswith(skip_prefixes):
return
# Saltar ALTER ... OWNER TO postgres (u otros OWNER)
if " OWNER TO " in upper:
return
# Quitar ';' final (psycopg2 no la necesita)
if stmt.endswith(";"):
stmt = stmt[:-1]
try:
cur.execute(stmt)
except Exception as e:
msg = str(e).lower()
# Ignorar cosas no fatales típicas de dumps
if "already exists" in msg or "duplicate key value" in msg:
print("[WARN] Ignorando error no crítico:", e)
return
raise
for raw_line in sql_text.splitlines():
line = raw_line.rstrip("\n")
stripped = line.strip()
# Comentarios o líneas vacías (si no estamos en COPY/función)
if not in_copy and not in_function:
if not stripped or stripped.startswith("--"):
continue
# ====== BLOQUE COPY ... FROM stdin ======
if in_copy:
if stripped == r"\.":
data_str = "\n".join(copy_rows) + "\n"
copy_rows.clear()
in_copy = False
cur.copy_expert(copy_sql, io.StringIO(data_str))
else:
copy_rows.append(line)
continue
# ====== BLOQUE CREATE FUNCTION ... $$ ... $$ (IGNORAR) ======
if in_function:
# Contamos apariciones del delimitador ($$ o $body$)
if function_delim:
function_delim_count += line.count(function_delim)
# Cuando lo hemos visto al menos 2 veces
# (apertura y cierre) salimos del bloque función
if function_delim_count >= 2:
in_function = False
function_delim = None
function_delim_count = 0
continue
# Detectar inicio de COPY
if (
stripped.upper().startswith("COPY ")
and "FROM stdin" in stripped.upper()
):
flush_statement()
in_copy = True
copy_sql = stripped
copy_rows = []
continue
# Detectar inicio de función: CREATE [OR REPLACE] FUNCTION ...
if stripped.upper().startswith("CREATE FUNCTION") or stripped.upper().startswith(
"CREATE OR REPLACE FUNCTION"
):
# Entramos en bloque función → lo ignoramos entero
in_function = True
# Detectar delimitador tipo $$ o $algo$
m = re.search(r"\$(\w*)\$", stripped)
if m:
function_delim = f"${m.group(1)}$"
else:
function_delim = "$$"
# Contamos cuántas veces aparece ya en esta línea
function_delim_count = stripped.count(function_delim)
# Caso raro: función toda en una sola línea (apertura+cierre)
if function_delim_count >= 2:
in_function = False
function_delim = None
function_delim_count = 0
# No añadimos la línea al buffer, se ignora
continue
# ====== STATEMENTS NORMALES ======
stmt_lines.append(line)
if stripped.endswith(";"):
flush_statement()
# Por si quedó algo pendiente sin ';'
if stmt_lines:
flush_statement()
except Exception as e:
# Limpiar schema si algo salió mal
try:
with conn.cursor() as cur:
cur.execute(
pgsql.SQL("DROP SCHEMA IF EXISTS {} CASCADE").format(
pgsql.Identifier(schema_name)
)
)
except Exception:
pass
conn.close()
raise RuntimeError(f"Error ejecutando dump SQL en Postgres: {e}")
finally:
conn.close()
self.connections[connection_id] = {
"label": label,
"engine": "postgres",
"schema": schema_name,
}
return connection_id
# ---------- ejecución segura de SQL ----------
def execute_sql(self, connection_id: str, sql_text: str) -> Dict[str, Any]:
"""
Ejecuta un SELECT dentro del schema asociado al connection_id.
Bloquea operaciones destructivas por seguridad.
"""
info = self._get_info(connection_id)
schema = info["schema"]
forbidden = ["drop ", "delete ", "update ", "insert ", "alter ", "replace "]
sql_low = sql_text.lower()
if any(tok in sql_low for tok in forbidden):
return {
"ok": False,
"error": "Query bloqueada por seguridad (operación destructiva).",
"rows": None,
"columns": [],
}
conn = self._get_conn()
try:
with conn.cursor() as cur:
# usar el schema de la sesión
cur.execute(
pgsql.SQL("SET search_path TO {}").format(
pgsql.Identifier(schema)
)
)
cur.execute(sql_text)
if cur.description:
rows = cur.fetchall()
cols = [d[0] for d in cur.description]
else:
rows, cols = [], []
return {
"ok": True,
"error": None,
"rows": [list(r) for r in rows],
"columns": cols,
}
except Exception as e:
return {"ok": False, "error": str(e), "rows": None, "columns": []}
finally:
conn.close()
# ---------- introspección de esquema ----------
def get_schema(self, connection_id: str) -> Dict[str, Any]:
info = self._get_info(connection_id)
schema = info["schema"]
conn = self._get_conn()
try:
tables_info: Dict[str, Dict[str, Any]] = {}
foreign_keys: List[Dict[str, Any]] = []
with conn.cursor() as cur:
# Tablas básicas
cur.execute(
"""
SELECT table_name
FROM information_schema.tables
WHERE table_schema = %s
AND table_type = 'BASE TABLE'
ORDER BY table_name;
""",
(schema,),
)
tables = [r[0] for r in cur.fetchall()]
# Columnas por tabla
for t in tables:
cur.execute(
"""
SELECT column_name
FROM information_schema.columns
WHERE table_schema = %s
AND table_name = %s
ORDER BY ordinal_position;
""",
(schema, t),
)
cols = [r[0] for r in cur.fetchall()]
tables_info[t] = {"columns": cols}
# Foreign keys
cur.execute(
"""
SELECT
tc.table_name AS from_table,
kcu.column_name AS from_column,
ccu.table_name AS to_table,
ccu.column_name AS to_column
FROM information_schema.table_constraints AS tc
JOIN information_schema.key_column_usage AS kcu
ON tc.constraint_name = kcu.constraint_name
AND tc.table_schema = kcu.table_schema
JOIN information_schema.constraint_column_usage AS ccu
ON ccu.constraint_name = tc.constraint_name
AND ccu.table_schema = tc.table_schema
WHERE tc.constraint_type = 'FOREIGN KEY'
AND tc.table_schema = %s;
""",
(schema,),
)
for ft, fc, tt, tc2 in cur.fetchall():
foreign_keys.append(
{
"from_table": ft,
"from_column": fc,
"to_table": tt,
"to_column": tc2,
}
)
return {
"tables": tables_info,
"foreign_keys": foreign_keys,
}
finally:
conn.close()
# ---------- preview de tabla ----------
def get_preview(
self, connection_id: str, table: str, limit: int = 20
) -> Dict[str, Any]:
info = self._get_info(connection_id)
schema = info["schema"]
conn = self._get_conn()
try:
with conn.cursor() as cur:
cur.execute(
pgsql.SQL("SET search_path TO {}").format(
pgsql.Identifier(schema)
)
)
query = pgsql.SQL("SELECT * FROM {} LIMIT %s").format(
pgsql.Identifier(table)
)
cur.execute(query, (int(limit),))
rows = cur.fetchall()
cols = [d[0] for d in cur.description] if cur.description else []
return {
"columns": cols,
"rows": [list(r) for r in rows],
}
finally:
conn.close()
# Instancia global de PostgresManager
sql_manager = PostgresManager(POSTGRES_DSN)
# ======================================================
# 2) Inicialización de FastAPI
# ======================================================
app = FastAPI(
title="NL2SQL Backend (Supabase + Postgres/Neon)",
version="3.0.0",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# ======================================================
# 3) Modelo NL→SQL y traductor ES→EN
# ======================================================
t5_tokenizer = None
t5_model = None
mt_tokenizer = None
mt_model = None
def load_nl2sql_model():
"""Carga el modelo NL→SQL (T5-large fine-tuned en Spider) desde HF Hub."""
global t5_tokenizer, t5_model
if t5_model is not None:
return
print(f"🔁 Cargando modelo NL→SQL desde: {MODEL_DIR}")
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=True)
t5_model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_DIR, torch_dtype=torch.float32
)
t5_model.to(DEVICE)
t5_model.eval()
print("✅ Modelo NL→SQL listo en memoria.")
def load_es_en_translator():
"""Carga el modelo Helsinki-NLP para traducción ES→EN (solo una vez)."""
global mt_tokenizer, mt_model
if mt_model is not None:
return
model_name = "Helsinki-NLP/opus-mt-es-en"
print(f"🔁 Cargando traductor ES→EN: {model_name}")
mt_tokenizer = MarianTokenizer.from_pretrained(model_name)
mt_model = MarianMTModel.from_pretrained(model_name)
mt_model.to(DEVICE)
mt_model.eval()
print("✅ Traductor ES→EN listo.")
def detect_language(text: str) -> str:
try:
return detect(text)
except Exception:
return "unknown"
def translate_es_to_en(text: str) -> str:
"""
Usa Marian ES→EN solo si el texto se detecta como español ('es').
Si no, devuelve el texto tal cual.
"""
lang = detect_language(text)
if lang != "es":
return text
if mt_model is None:
load_es_en_translator()
inputs = mt_tokenizer(text, return_tensors="pt", truncation=True).to(DEVICE)
with torch.no_grad():
out = mt_model.generate(**inputs, max_length=256)
return mt_tokenizer.decode(out[0], skip_special_tokens=True)
# ======================================================
# 4) Capa de reparación de SQL (usa el schema real)
# ======================================================
def _normalize_name_for_match(name: str) -> str:
s = name.lower()
s = s.replace('"', "").replace("`", "")
s = s.replace("_", "")
if s.endswith("s") and len(s) > 3:
s = s[:-1]
return s
def _build_schema_indexes(
tables_info: Dict[str, Dict[str, List[str]]]
) -> Dict[str, Dict[str, List[str]]]:
table_index: Dict[str, List[str]] = {}
column_index: Dict[str, List[str]] = {}
for t, info in tables_info.items():
tn = _normalize_name_for_match(t)
table_index.setdefault(tn, [])
if t not in table_index[tn]:
table_index[tn].append(t)
for c in info.get("columns", []):
cn = _normalize_name_for_match(c)
column_index.setdefault(cn, [])
if c not in column_index[cn]:
column_index[cn].append(c)
return {"table_index": table_index, "column_index": column_index}
def _best_match_name(missing: str, index: Dict[str, List[str]]) -> Optional[str]:
if not index:
return None
key = _normalize_name_for_match(missing)
if key in index and index[key]:
return index[key][0]
candidates = difflib.get_close_matches(key, list(index.keys()), n=1, cutoff=0.7)
if not candidates:
return None
best_key = candidates[0]
if index[best_key]:
return index[best_key][0]
return None
DOMAIN_SYNONYMS_TABLE = {
"song": "track",
"songs": "track",
"tracks": "track",
"artist": "artist",
"artists": "artist",
"album": "album",
"albums": "album",
"order": "invoice",
"orders": "invoice",
}
DOMAIN_SYNONYMS_COLUMN = {
"song": "name",
"songs": "name",
"track": "name",
"title": "name",
"length": "milliseconds",
"duration": "milliseconds",
}
def try_repair_sql(sql: str, error: str, schema_meta: Dict[str, Any]) -> Optional[str]:
"""
Intenta reparar nombres de tablas/columnas basándose en el esquema real.
Compatible con mensajes de Postgres y también con los de SQLite
(por si algún día reusamos la lógica).
"""
tables_info = schema_meta["tables"]
idx = _build_schema_indexes(tables_info)
table_index = idx["table_index"]
column_index = idx["column_index"]
repaired_sql = sql
changed = False
missing_table = None
missing_column = None
m_t = re.search(r'relation "([\w\.]+)" does not exist', error, re.IGNORECASE)
if not m_t:
m_t = re.search(r"no such table: ([\w\.]+)", error)
if m_t:
missing_table = m_t.group(1)
m_c = re.search(r'column "([\w\.]+)" does not exist', error, re.IGNORECASE)
if not m_c:
m_c = re.search(r"no such column: ([\w\.]+)", error)
if m_c:
missing_column = m_c.group(1)
if missing_table:
short = missing_table.split(".")[-1]
syn = DOMAIN_SYNONYMS_TABLE.get(short.lower())
target = None
if syn:
target = _best_match_name(syn, table_index) or syn
if not target:
target = _best_match_name(short, table_index)
if target:
pattern = r"\b" + re.escape(short) + r"\b"
new_sql = re.sub(pattern, target, repaired_sql)
if new_sql != repaired_sql:
repaired_sql = new_sql
changed = True
if missing_column:
short = missing_column.split(".")[-1]
syn = DOMAIN_SYNONYMS_COLUMN.get(short.lower())
target = None
if syn:
target = _best_match_name(syn, column_index) or syn
if not target:
target = _best_match_name(short, column_index)
if target:
pattern = r"\b" + re.escape(short) + r"\b"
new_sql = re.sub(pattern, target, repaired_sql)
if new_sql != repaired_sql:
repaired_sql = new_sql
changed = True
if not changed:
return None
return repaired_sql
# ======================================================
# 5) Prompt NL→SQL + re-ranking
# ======================================================
def build_prompt(question_en: str, db_id: str, schema_str: str) -> str:
return (
f"translate to SQL: {question_en} | "
f"db: {db_id} | schema: {schema_str} | "
f"note: use JOIN when foreign keys link tables"
)
def normalize_score(raw: float) -> float:
"""Normaliza el score logit del modelo a un porcentaje 0-100."""
norm = (raw + 20) / 25
norm = max(0, min(1, norm))
return round(norm * 100, 2)
def nl2sql_with_rerank(question: str, conn_id: str) -> Dict[str, Any]:
if conn_id not in sql_manager.connections:
raise HTTPException(
status_code=404, detail=f"connection_id '{conn_id}' no registrado"
)
meta = sql_manager.get_schema(conn_id)
tables_info = meta["tables"]
parts = []
for t, info in tables_info.items():
cols = info.get("columns", [])
parts.append(f"{t}(" + ", ".join(cols) + ")")
schema_str = " ; ".join(parts) if parts else "(empty_schema)"
detected = detect_language(question)
question_en = translate_es_to_en(question) if detected == "es" else question
prompt = build_prompt(question_en, db_id=conn_id, schema_str=schema_str)
if t5_model is None:
load_nl2sql_model()
inputs = t5_tokenizer(
[prompt], return_tensors="pt", truncation=True, max_length=768
).to(DEVICE)
num_beams = 6
num_return = 6
with torch.no_grad():
out = t5_model.generate(
**inputs,
max_length=220,
num_beams=num_beams,
num_return_sequences=num_return,
return_dict_in_generate=True,
output_scores=True,
)
sequences = out.sequences
scores = out.sequences_scores
if scores is not None:
scores = scores.cpu().tolist()
else:
scores = [0.0] * sequences.size(0)
candidates: List[Dict[str, Any]] = []
best = None
best_exec = False
best_score = -1e9
for i in range(sequences.size(0)):
raw_sql = t5_tokenizer.decode(
sequences[i], skip_special_tokens=True
).strip()
cand: Dict[str, Any] = {
"sql": raw_sql,
"score": float(scores[i]),
"repaired_from": None,
"repair_note": None,
"raw_sql_model": raw_sql,
}
exec_info = sql_manager.execute_sql(conn_id, raw_sql)
err_lower = (exec_info["error"] or "").lower()
if (not exec_info["ok"]) and (
"no such table" in err_lower
or "no such column" in err_lower
or "does not exist" in err_lower
):
current_sql = raw_sql
last_error = exec_info["error"] or ""
for step in range(1, 4):
repaired_sql = try_repair_sql(current_sql, last_error, meta)
if not repaired_sql or repaired_sql == current_sql:
break
exec_info2 = sql_manager.execute_sql(conn_id, repaired_sql)
cand["repaired_from"] = (
current_sql if cand["repaired_from"] is None else cand["repaired_from"]
)
cand["repair_note"] = f"auto-repair (table/column name, step {step})"
cand["sql"] = repaired_sql
exec_info = exec_info2
current_sql = repaired_sql
if exec_info2["ok"]:
break
last_error = exec_info2["error"] or ""
cand["exec_ok"] = exec_info["ok"]
cand["exec_error"] = exec_info["error"]
cand["rows_preview"] = (
exec_info["rows"][:5] if exec_info["ok"] and exec_info["rows"] else None
)
cand["columns"] = exec_info["columns"]
candidates.append(cand)
if exec_info["ok"]:
if (not best_exec) or cand["score"] > best_score:
best_exec = True
best_score = cand["score"]
best = cand
elif not best_exec and cand["score"] > best_score:
best_score = cand["score"]
best = cand
if best is None and candidates:
best = candidates[0]
return {
"question_original": question,
"detected_language": detected,
"question_en": question_en,
"connection_id": conn_id,
"schema_summary": schema_str,
"best_sql": best["sql"],
"best_exec_ok": best.get("exec_ok", False),
"best_exec_error": best.get("exec_error"),
"best_rows_preview": best.get("rows_preview"),
"best_columns": best.get("columns", []),
"candidates": candidates,
"score_percent": normalize_score(best["score"]),
}
# ======================================================
# 6) Schemas Pydantic
# ======================================================
class UploadResponse(BaseModel):
connection_id: str
label: str
db_path: str
note: Optional[str] = None
class ConnectionInfo(BaseModel):
connection_id: str
label: str
engine: Optional[str] = None
db_name: Optional[str] = None # ya no usamos archivo, pero mantenemos campo
class SchemaResponse(BaseModel):
connection_id: str
schema_summary: str
tables: Dict[str, Dict[str, List[str]]]
class PreviewResponse(BaseModel):
connection_id: str
table: str
columns: List[str]
rows: List[List[Any]]
class InferRequest(BaseModel):
connection_id: str
question: str
class InferResponse(BaseModel):
question_original: str
detected_language: str
question_en: str
connection_id: str
schema_summary: str
best_sql: str
best_exec_ok: bool
best_exec_error: Optional[str]
best_rows_preview: Optional[List[List[Any]]]
best_columns: List[str]
candidates: List[Dict[str, Any]]
class SpeechInferResponse(BaseModel):
transcript: str
result: InferResponse
# ======================================================
# 7) Helpers para /upload (.sql y .zip)
# ======================================================
def _combine_sql_files_from_zip(zip_bytes: bytes) -> str:
"""
Lee un ZIP, se queda solo con los .sql y los concatena.
Orden:
1) archivos con 'schema' o 'structure' en el nombre
2) el resto (data, etc.)
"""
try:
with zipfile.ZipFile(io.BytesIO(zip_bytes)) as zf:
names = [info.filename for info in zf.infolist() if not info.is_dir()]
sql_names = [n for n in names if n.lower().endswith(".sql")]
if not sql_names:
raise ValueError("El ZIP no contiene archivos .sql utilizables.")
def sort_key(name: str) -> int:
nl = name.lower()
if "schema" in nl or "structure" in nl:
return 0
return 1
sql_names_sorted = sorted(sql_names, key=sort_key)
parts: List[str] = []
for name in sql_names_sorted:
with zf.open(name) as f:
text = f.read().decode("utf-8", errors="ignore")
parts.append(f"-- FILE: {name}\n{text}\n")
return "\n\n".join(parts)
except zipfile.BadZipFile:
raise ValueError("Archivo ZIP inválido o corrupto.")
# ======================================================
# 8) Endpoints FastAPI
# ======================================================
@app.on_event("startup")
async def startup_event():
load_nl2sql_model()
print("✅ Backend NL2SQL inicializado (engine Postgres/Neon).")
print(f"MODEL_DIR={MODEL_DIR}, DEVICE={DEVICE}")
print(f"Conexiones activas al inicio: {len(sql_manager.connections)}")
@app.post("/upload", response_model=UploadResponse)
async def upload_database(
mode: str = Form("full"), # "full" | "schema_data" | "zip"
db_files: List[UploadFile] = File(...), # uno o varios archivos
authorization: Optional[str] = Header(None),
):
"""
Sube uno o varios archivos SQL/ZIP según el modo:
- mode = "full":
* Espera EXACTAMENTE 1 archivo .sql
* El .sql trae esquema + datos juntos (dump de PostgreSQL)
- mode = "schema_data":
* Espera EXACTAMENTE 2 archivos .sql
* Uno de esquema y otro de datos (el orden lo resolvemos nosotros)
- mode = "zip":
* Espera EXACTAMENTE 1 archivo .zip
* Dentro del zip buscamos SOLO archivos .sql (ignoramos el resto)
"""
if authorization is None:
raise HTTPException(401, "Missing Authorization header")
jwt = authorization.replace("Bearer ", "")
user = supabase.auth.get_user(jwt)
if not user or not user.user:
raise HTTPException(401, "Invalid Supabase token")
if not db_files:
raise HTTPException(400, "No se recibió ningún archivo.")
mode = mode.lower().strip()
# =======================
# MODO 1: FULL (.sql único)
# =======================
if mode == "full":
if len(db_files) != 1:
raise HTTPException(
400, "Modo FULL requiere exactamente 1 archivo .sql."
)
file = db_files[0]
filename = file.filename or ""
if not filename.lower().endswith(".sql"):
raise HTTPException(400, "Modo FULL solo acepta archivos .sql.")
contents = await file.read()
sql_text = contents.decode("utf-8", errors="ignore")
# ====================================
# MODO 2: ESQUEMA + DATOS (2 archivos)
# ====================================
elif mode == "schema_data":
if len(db_files) != 2:
raise HTTPException(
400,
"Modo esquema+datos requiere exactamente 2 archivos .sql.",
)
files_info: List[tuple[str, str]] = []
for f in db_files:
fname = f.filename or ""
if not fname.lower().endswith(".sql"):
raise HTTPException(400, "Todos los archivos deben ser .sql.")
contents = await f.read()
files_info.append((fname, contents.decode("utf-8", errors="ignore")))
# Intentamos poner primero el esquema y luego los datos
def weight(name: str) -> int:
nl = name.lower()
if "schema" in nl or "structure" in nl:
return 0
if "data" in nl or "insert" in nl:
return 1
return 2
files_info_sorted = sorted(files_info, key=lambda x: weight(x[0]))
sql_parts: List[str] = []
for fname, text in files_info_sorted:
sql_parts.append(f"-- FILE: {fname}\n{text}\n")
sql_text = "\n\n".join(sql_parts)
# usamos el nombre del primer archivo como label "principal"
filename = files_info_sorted[0][0]
# ==================
# MODO 3: ZIP (.zip)
# ==================
elif mode == "zip":
if len(db_files) != 1:
raise HTTPException(
400, "Modo ZIP requiere exactamente 1 archivo .zip."
)
file = db_files[0]
filename = file.filename or ""
if not filename.lower().endswith(".zip"):
raise HTTPException(400, "Modo ZIP solo acepta archivos .zip.")
contents = await file.read()
# tu helper ya ignora carpetas y solo concatena .sql
sql_text = _combine_sql_files_from_zip(contents)
else:
raise HTTPException(400, f"Modo no soportado: {mode}")
# --- crear schema dinámico en Postgres (Neon) ---
try:
conn_id = sql_manager.create_database_from_dump(
label=filename, sql_text=sql_text
)
except Exception as e:
raise HTTPException(400, f"Error creando BD: {e}")
meta = sql_manager.connections[conn_id]
# --- guardar metadatos en Supabase (sin romper el upload si falla) ---
try:
supabase.table("databases").insert(
{
"user_id": user.user.id,
"filename": filename,
"engine": meta["engine"],
"connection_id": conn_id,
}
).execute()
except Exception as e:
# Solo logeamos, pero NO rompemos el endpoint
print("[WARN] No se pudieron guardar metadatos en Supabase:", repr(e))
return UploadResponse(
connection_id=conn_id,
label=filename,
db_path=f"{meta['engine']}://schema/{meta['schema']}",
note="Database schema created in Neon and indexed in Supabase.",
)
@app.get("/connections", response_model=List[ConnectionInfo])
async def list_connections():
return [
ConnectionInfo(
connection_id=cid,
label=meta.get("label", ""),
engine=meta.get("engine"),
db_name=meta.get("schema"), # usamos schema como "nombre"
)
for cid, meta in sql_manager.connections.items()
]
@app.get("/schema/{connection_id}", response_model=SchemaResponse)
async def get_schema(connection_id: str):
if connection_id not in sql_manager.connections:
raise HTTPException(status_code=404, detail="connection_id no encontrado")
meta = sql_manager.get_schema(connection_id)
tables = meta["tables"]
parts = []
for t, info in tables.items():
cols = info.get("columns", [])
parts.append(f"{t}(" + ", ".join(cols) + ")")
schema_str = " ; ".join(parts) if parts else "(empty_schema)"
return SchemaResponse(
connection_id=connection_id,
schema_summary=schema_str,
tables=tables,
)
@app.get("/preview/{connection_id}/{table}", response_model=PreviewResponse)
async def preview_table(connection_id: str, table: str, limit: int = 20):
if connection_id not in sql_manager.connections:
raise HTTPException(status_code=404, detail="connection_id no encontrado")
try:
preview = sql_manager.get_preview(connection_id, table, limit)
except Exception as e:
raise HTTPException(
status_code=400, detail=f"Error al leer tabla '{table}': {e}"
)
return PreviewResponse(
connection_id=connection_id,
table=table,
columns=preview["columns"],
rows=preview["rows"],
)
@app.post("/infer", response_model=InferResponse)
async def infer_sql(
req: InferRequest,
authorization: Optional[str] = Header(None),
):
if authorization is None:
raise HTTPException(401, "Missing Authorization header")
jwt = authorization.replace("Bearer ", "")
user = supabase.auth.get_user(jwt)
if not user or not user.user:
raise HTTPException(401, "Invalid Supabase token")
result = nl2sql_with_rerank(req.question, req.connection_id)
score = normalize_score(result["candidates"][0]["score"])
db_row = (
supabase.table("databases")
.select("id")
.eq("connection_id", req.connection_id)
.eq("user_id", user.user.id)
.execute()
)
db_id = db_row.data[0]["id"] if db_row.data else None
supabase.table("queries").insert(
{
"user_id": user.user.id,
"db_id": db_id,
"nl": result["question_original"],
"sql_generated": result["best_sql"],
"sql_repaired": result["candidates"][0]["sql"],
"execution_ok": result["best_exec_ok"],
"error": result["best_exec_error"],
"rows_preview": result["best_rows_preview"],
"score": score,
}
).execute()
result["score_percent"] = score
return InferResponse(**result)
@app.post("/speech-infer", response_model=SpeechInferResponse)
async def speech_infer(
connection_id: str = Form(...),
audio: UploadFile = File(...),
):
if openai_client is None:
raise HTTPException(
status_code=500,
detail="OPENAI_API_KEY no está configurado en el backend.",
)
if audio.content_type is None:
raise HTTPException(status_code=400, detail="Archivo de audio inválido.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".webm") as tmp:
tmp.write(await audio.read())
tmp_path = tmp.name
except Exception:
raise HTTPException(
status_code=500, detail="No se pudo procesar el audio recibido."
)
try:
with open(tmp_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(
model="gpt-4o-transcribe",
file=f,
)
transcript_text: str = transcription.text
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al transcribir audio: {e}")
result_dict = nl2sql_with_rerank(transcript_text, connection_id)
infer_result = InferResponse(**result_dict)
return SpeechInferResponse(
transcript=transcript_text,
result=infer_result,
)
@app.get("/health")
async def health():
return {
"status": "ok",
"model_loaded": t5_model is not None,
"connections": len(sql_manager.connections),
"device": str(DEVICE),
"engine": "postgres",
}
@app.get("/history")
def get_history(authorization: Optional[str] = Header(None)):
if authorization is None:
raise HTTPException(401, "Missing Authorization")
jwt = authorization.replace("Bearer ", "")
user = supabase.auth.get_user(jwt)
rows = (
supabase.table("queries")
.select("*")
.eq("user_id", user.user.id)
.order("created_at", desc=True)
.execute()
)
return rows.data
@app.get("/my-databases")
def get_my_databases(authorization: Optional[str] = Header(None)):
if authorization is None:
raise HTTPException(401, "Missing Authorization")
jwt = authorization.replace("Bearer ", "")
user = supabase.auth.get_user(jwt)
rows = (
supabase.table("databases")
.select("*")
.eq("user_id", user.user.id)
.execute()
)
return rows.data
@app.get("/")
async def root():
return {
"message": "NL2SQL T5-large backend running on Postgres/Neon (no SQLite).",
"endpoints": [
"POST /upload (subir .sql o .zip con .sql → crea schema en Neon)",
"GET /connections (listar BDs subidas en esta instancia)",
"GET /schema/{id} (esquema resumido)",
"GET /preview/{id}/{t} (preview de tabla)",
"POST /infer (NL→SQL + ejecución en BD)",
"POST /speech-infer (voz → NL→SQL + ejecución)",
"GET /history (historial de consultas en Supabase)",
"GET /my-databases (BDs del usuario en Supabase)",
"GET /health (estado del backend)",
"GET /docs (OpenAPI UI)",
],
} |