import os import io import zipfile import re import difflib import tempfile import uuid from typing import List, Optional, Dict, Any from fastapi import FastAPI, UploadFile, File, HTTPException, Form, Header from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from langdetect import detect from transformers import MarianMTModel, MarianTokenizer from openai import OpenAI # ---- Postgres ---- import psycopg2 from psycopg2 import sql as pgsql # ---- Supabase ---- from supabase import create_client, Client SUPABASE_URL = "https://bnvmqgjawtaslczewqyd.supabase.co" SUPABASE_ANON_KEY = ( "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImJudm1x" "Z2phd3Rhc2xjemV3cXlkIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NjQ0NjM5NDAsImV4cCI6MjA4" "MDAzOTk0MH0.9zkyqrsm-QOSwMTUPZEWqyFeNpbbuar01rB7pmObkUI" ) supabase: Client = create_client(SUPABASE_URL, SUPABASE_ANON_KEY) # ====================================================== # 0) Configuración general de paths / modelo / OpenAI # ====================================================== MODEL_DIR = os.getenv("MODEL_DIR", "stvnnnnnn/t5-large-nl2sql-spider") DEVICE = torch.device("cpu") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") openai_client = OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None # DSN de Supabase Postgres – EJEMPLO: # postgresql://postgres:TU_PASSWORD@db.xxx.supabase.co:5432/postgres POSTGRES_DSN = os.getenv("POSTGRES_DSN") if not POSTGRES_DSN: raise RuntimeError( "⚠️ POSTGRES_DSN no está definido. " "Configúralo en los secrets del Space con la cadena de conexión de Supabase." ) # ====================================================== # 1) Gestor de conexiones dinámicas: Postgres (Neon) # ====================================================== class PostgresManager: """ Cada upload crea un *schema* aislado en Neon. connections[connection_id] = { "label": str, # nombre de archivo original "engine": "postgres", "schema": str # nombre del schema en Neon } """ def __init__(self, dsn: str): self.dsn = dsn self.connections: Dict[str, Dict[str, Any]] = {} # ---------- utilidades internas ---------- def _new_connection_id(self) -> str: return f"db_{uuid.uuid4().hex[:8]}" def _get_info(self, connection_id: str) -> Dict[str, Any]: if connection_id not in self.connections: raise KeyError(f"connection_id '{connection_id}' no registrado") return self.connections[connection_id] def _get_conn(self, autocommit: bool = True): conn = psycopg2.connect(self.dsn) conn.autocommit = autocommit return conn # ---------- helpers de sanitización de dumps ---------- def _rewrite_line_for_schema(self, line: str, schema_name: str) -> str: """ Versión simplificada: - Solo elimina líneas que modifican el search_path. - NO reescribe public./pagila. → dejamos que el dump use su propio schema. """ if "search_path" in line.lower(): return "" return line def _should_skip_statement(self, stmt: str) -> bool: """ Devuelve True si el statement NO debe ejecutarse (grants, owner, create db, domains, etc.). Filtro universal para dumps PostgreSQL (Neon, Pagila, etc.). """ if not stmt: return True upper = stmt.upper().strip() # 1) Statements globales / de administración que SIEMPRE ignoramos skip_prefixes = ( "SET ", "RESET ", "SELECT PG_CATALOG.SET_CONFIG", "COMMENT ON EXTENSION", "COMMENT ON SCHEMA", "COMMENT ON DATABASE", "COMMENT ON COLLATION", "COMMENT ON CONVERSION", "COMMENT ON LANGUAGE", "COMMENT ON TEXT SEARCH", "COMMENT ON FOREIGN", "CREATE DATABASE", "ALTER DATABASE", "DROP DATABASE", "CREATE EXTENSION", "ALTER EXTENSION", "DROP EXTENSION", "REVOKE ", "GRANT ", "ALTER ROLE", "CREATE ROLE", "DROP ROLE", "CREATE USER", "ALTER USER", "DROP USER", "ALTER DEFAULT PRIVILEGES", "SECURITY LABEL", "BEGIN", "COMMIT", "ROLLBACK", ) if upper.startswith(skip_prefixes): return True # 2) Cualquier cosa que toque OWNER / AUTHORIZATION la ignoramos owner_markers = ( " OWNER TO ", " OWNER ", "AUTHORIZATION POSTGRES", "AUTHORIZATION PUBLIC", "AUTHORIZATION CURRENT_USER", "AUTHORIZATION \"POSTGRES\"", ) if any(marker in upper for marker in owner_markers): return True # 3) Grants / revokes explícitos a postgres o public (aunque no empiecen por GRANT/REVOKE) if " TO POSTGRES" in upper or " FROM POSTGRES" in upper: return True if " TO PUBLIC" in upper or " FROM PUBLIC" in upper: return True return False def _execute_sanitized_pg_dump( self, cur, sql_text: str, schema_name: str ) -> None: """ Ejecuta un dump de PostgreSQL dentro de un schema de sesión, aplicando sanitización y soportando COPY ... FROM stdin;. - Reescribe public./pagila. -> schema_name. - Respeta funciones con $$...$$ (no corta por ';' internos). - Ignora statements peligrosos via _should_skip_statement(). """ in_copy = False copy_sql = "" copy_lines: list[str] = [] buffer = "" # statement acumulado in_dollar = False # estamos dentro de $$...$$ ? dollar_tag = "" # por ej. "$func$" in_domain_block = False # 👈 estamos dentro de un bloque CREATE DOMAIN ? in_function_block = False # 👈 estamos dentro de un CREATE FUNCTION ? def flush_statement(): nonlocal buffer stmt = buffer.strip() buffer = "" if not stmt: return if self._should_skip_statement(stmt): return try: cur.execute(stmt) except Exception as e: msg = str(e).lower() # Ignoramos errores típicos de dumps que no son fatales if "already exists" in msg or "duplicate key value" in msg: print("[WARN] Ignorando error no crítico:", e) return raise # Procesar línea por línea for raw_line in sql_text.splitlines(): line = raw_line.rstrip("\n") stripped = line.strip() # ====== BLOQUE CREATE FUNCTION (lo ignoramos entero) ====== if in_function_block: # Cerramos cuando vemos algo tipo "$_$;" o "$func$;" if re.search(r"\$[A-Za-z0-9_]*\$;", stripped): in_function_block = False continue # Comentarios y líneas vacías (fuera de COPY / DOMAIN / FUNCTION) if not in_copy and not in_domain_block: if not stripped or stripped.startswith("--"): continue upper_line = stripped.upper() if ( upper_line.startswith("CREATE FUNCTION") or upper_line.startswith("CREATE OR REPLACE FUNCTION") or upper_line.startswith("ALTER FUNCTION") ): # Ignoramos toda la función (cabecera + cuerpo) in_function_block = True continue # ====== BLOQUE COPY ... FROM stdin ====== if in_copy: if stripped == r"\.": # fin de COPY data = "\n".join(copy_lines) + "\n" cur.copy_expert(copy_sql, io.StringIO(data)) in_copy = False copy_sql = "" copy_lines.clear() else: copy_lines.append(line) continue # Reescribimos la línea según el schema de sesión line = self._rewrite_line_for_schema(line, schema_name) stripped = line.strip() if not stripped: continue # Detectar inicio de COPY ahora que la línea ya está reescrita if stripped.upper().startswith("COPY ") and "FROM stdin" in stripped.upper(): # Ejecutar lo que haya pendiente antes del COPY flush_statement() in_copy = True copy_sql = stripped # ya reescrita copy_lines = [] continue # Escanear la línea caracter a caracter para detectar $tag$ y ';' i = 0 start_seg = 0 length = len(line) while i < length: ch = line[i] # Manejo de delimitadores $tag$ if ch == "$": # ¿Inicio o fin de bloque dollar-quoted? j = i + 1 while j < length and (line[j].isalnum() or line[j] == "_"): j += 1 if j < length and line[j] == "$": tag = line[i : j + 1] # incluye ambos '$' if not in_dollar: in_dollar = True dollar_tag = tag else: if tag == dollar_tag: in_dollar = False dollar_tag = "" i = j + 1 continue # Fin de statement: ';' fuera de bloque dollar-quoted if ch == ";" and not in_dollar: segment = line[start_seg : i + 1] buffer += segment + "\n" flush_statement() start_seg = i + 1 i += 1 continue i += 1 # Resto de la línea (después del último ';' o toda la línea si no hubo ';') if start_seg < length: buffer += line[start_seg:] + "\n" # Ejecutar lo que quede pendiente flush_statement() # Por seguridad, aseguramos que no haya COPY abierto sin cerrar if in_copy: raise RuntimeError("Dump SQL inválido: COPY sin terminación '\\.'") # ---------- creación de BD desde dump ---------- def create_database_from_dump(self, label: str, sql_text: str) -> str: """ Restaura un dump de Postgres (schema + datos) en la BD Neon. NO crea schemas de sesión: deja que el dump use sus propios schemas (public, pagila, etc.). Luego detecta el schema con más tablas. """ connection_id = self._new_connection_id() schema_name: str | None = None conn = self._get_conn() try: with conn.cursor() as cur: # 1) Ejecutar el dump tal cual (solo limpiamos search_path) self._execute_sanitized_pg_dump(cur, sql_text, schema_name="public") # 2) Detectar el schema REAL donde quedaron las tablas del dump cur.execute( """ SELECT table_schema, COUNT(*) AS n FROM information_schema.tables WHERE table_type = 'BASE TABLE' AND table_schema NOT IN ('pg_catalog','information_schema') GROUP BY table_schema ORDER BY n DESC; """ ) rows = cur.fetchall() if not rows: raise RuntimeError( "El dump se ejecutó pero no se encontraron tablas de usuario." ) # Tomamos el schema con más tablas (pagila, public, etc.) schema_name = rows[0][0] except Exception as e: conn.close() raise RuntimeError(f"Error ejecutando dump SQL en Postgres: {e}") finally: conn.close() self.connections[connection_id] = { "label": label, "engine": "postgres", "schema": schema_name, # 👈 ahora es el schema REAL con tablas } return connection_id # ---------- ejecución segura de SQL ---------- def execute_sql(self, connection_id: str, sql_text: str) -> Dict[str, Any]: """ Ejecuta un SELECT dentro del schema asociado al connection_id. Bloquea operaciones destructivas por seguridad. """ info = self._get_info(connection_id) schema = info["schema"] forbidden = ["drop ", "delete ", "update ", "insert ", "alter ", "replace "] sql_low = sql_text.lower() if any(tok in sql_low for tok in forbidden): return { "ok": False, "error": "Query bloqueada por seguridad (operación destructiva).", "rows": None, "columns": [], } conn = self._get_conn() try: with conn.cursor() as cur: # usar el schema de la sesión cur.execute( pgsql.SQL("SET search_path TO {}").format( pgsql.Identifier(schema) ) ) cur.execute(sql_text) if cur.description: rows = cur.fetchall() cols = [d[0] for d in cur.description] else: rows, cols = [], [] return { "ok": True, "error": None, "rows": [list(r) for r in rows], "columns": cols, } except Exception as e: return {"ok": False, "error": str(e), "rows": None, "columns": []} finally: conn.close() # ---------- introspección de esquema ---------- def get_schema(self, connection_id: str) -> Dict[str, Any]: info = self._get_info(connection_id) schema = info["schema"] # schema "ideal" que registramos conn = self._get_conn() try: tables_info: Dict[str, Dict[str, Any]] = {} foreign_keys: List[Dict[str, Any]] = [] with conn.cursor() as cur: # 1) Intentamos solo con el schema registrado cur.execute( """ SELECT table_name FROM information_schema.tables WHERE table_schema = %s AND table_type = 'BASE TABLE' ORDER BY table_name; """, (schema,), ) tables = [r[0] for r in cur.fetchall()] # 2) 🔁 Fallback: si no hay tablas en ese schema, # buscamos en TODOS los schemas de usuario if not tables: cur.execute( """ SELECT table_schema, table_name FROM information_schema.tables WHERE table_type = 'BASE TABLE' AND table_schema NOT IN ('pg_catalog','information_schema') ORDER BY table_schema, table_name; """ ) rows = cur.fetchall() if not rows: # No hay tablas en ningún schema de usuario return { "tables": {}, "foreign_keys": [], } # Schemas candidatos que sí tienen tablas schemas = sorted({s for (s, _) in rows}) # Preferimos: # 1) el schema ya registrado (si por alguna razón tiene tablas) # 2) 'pagila' # 3) 'public' # 4) el primero que aparezca target_schema = None if schema in schemas: target_schema = schema elif "pagila" in schemas: target_schema = "pagila" elif "public" in schemas: target_schema = "public" else: target_schema = schemas[0] print( f"[WARN] Schema '{schema}' sin tablas; usando schema real '{target_schema}'" ) # Actualizamos el schema asociado a esta conexión schema = target_schema info["schema"] = schema tables = [t for (s, t) in rows if s == schema] # 3) Columnas por tabla del schema final seleccionado for t in tables: cur.execute( """ SELECT column_name FROM information_schema.columns WHERE table_schema = %s AND table_name = %s ORDER BY ordinal_position; """, (schema, t), ) cols = [r[0] for r in cur.fetchall()] tables_info[t] = {"columns": cols} # 4) Foreign keys del schema final cur.execute( """ SELECT tc.table_name AS from_table, kcu.column_name AS from_column, ccu.table_name AS to_table, ccu.column_name AS to_column FROM information_schema.table_constraints AS tc JOIN information_schema.key_column_usage AS kcu ON tc.constraint_name = kcu.constraint_name AND tc.table_schema = kcu.table_schema JOIN information_schema.constraint_column_usage AS ccu ON ccu.constraint_name = tc.constraint_name AND ccu.table_schema = tc.table_schema WHERE tc.constraint_type = 'FOREIGN KEY' AND tc.table_schema = %s; """, (schema,), ) for ft, fc, tt, tc2 in cur.fetchall(): foreign_keys.append( { "from_table": ft, "from_column": fc, "to_table": tt, "to_column": tc2, } ) return { "tables": tables_info, "foreign_keys": foreign_keys, } finally: conn.close() # ---------- preview de tabla ---------- def get_preview( self, connection_id: str, table: str, limit: int = 20 ) -> Dict[str, Any]: info = self._get_info(connection_id) schema = info["schema"] conn = self._get_conn() try: with conn.cursor() as cur: cur.execute( pgsql.SQL("SET search_path TO {}").format( pgsql.Identifier(schema) ) ) query = pgsql.SQL("SELECT * FROM {} LIMIT %s").format( pgsql.Identifier(table) ) cur.execute(query, (int(limit),)) rows = cur.fetchall() cols = [d[0] for d in cur.description] if cur.description else [] return { "columns": cols, "rows": [list(r) for r in rows], } finally: conn.close() # Instancia global de PostgresManager sql_manager = PostgresManager(POSTGRES_DSN) # ====================================================== # 2) Inicialización de FastAPI # ====================================================== app = FastAPI( title="NL2SQL Backend", version="3.0.0", ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) # ====================================================== # 3) Modelo NL→SQL y traductor ES→EN # ====================================================== t5_tokenizer = None t5_model = None mt_tokenizer = None mt_model = None def load_nl2sql_model(): """Carga el modelo NL→SQL (T5-large fine-tuned en Spider) desde HF Hub.""" global t5_tokenizer, t5_model if t5_model is not None: return print(f"🔁 Cargando modelo NL→SQL desde: {MODEL_DIR}") t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=True) t5_model = AutoModelForSeq2SeqLM.from_pretrained( MODEL_DIR, torch_dtype=torch.float32 ) t5_model.to(DEVICE) t5_model.eval() print("✅ Modelo NL→SQL listo en memoria.") def load_es_en_translator(): """Carga el modelo Helsinki-NLP para traducción ES→EN (solo una vez).""" global mt_tokenizer, mt_model if mt_model is not None: return model_name = "Helsinki-NLP/opus-mt-es-en" print(f"🔁 Cargando traductor ES→EN: {model_name}") mt_tokenizer = MarianTokenizer.from_pretrained(model_name) mt_model = MarianMTModel.from_pretrained(model_name) mt_model.to(DEVICE) mt_model.eval() print("✅ Traductor ES→EN listo.") def detect_language(text: str) -> str: try: return detect(text) except Exception: return "unknown" def translate_es_to_en(text: str) -> str: """ Usa Marian ES→EN solo si el texto se detecta como español ('es'). Si no, devuelve el texto tal cual. """ lang = detect_language(text) if lang != "es": return text if mt_model is None: load_es_en_translator() inputs = mt_tokenizer(text, return_tensors="pt", truncation=True).to(DEVICE) with torch.no_grad(): out = mt_model.generate(**inputs, max_length=256) return mt_tokenizer.decode(out[0], skip_special_tokens=True) # ====================================================== # 4) Capa de reparación de SQL (usa el schema real) # ====================================================== def _normalize_name_for_match(name: str) -> str: s = name.lower() s = s.replace('"', "").replace("`", "") s = s.replace("_", "") if s.endswith("s") and len(s) > 3: s = s[:-1] return s def _build_schema_indexes( tables_info: Dict[str, Dict[str, List[str]]] ) -> Dict[str, Dict[str, List[str]]]: table_index: Dict[str, List[str]] = {} column_index: Dict[str, List[str]] = {} for t, info in tables_info.items(): tn = _normalize_name_for_match(t) table_index.setdefault(tn, []) if t not in table_index[tn]: table_index[tn].append(t) for c in info.get("columns", []): cn = _normalize_name_for_match(c) column_index.setdefault(cn, []) if c not in column_index[cn]: column_index[cn].append(c) return {"table_index": table_index, "column_index": column_index} def _best_match_name(missing: str, index: Dict[str, List[str]]) -> Optional[str]: if not index: return None key = _normalize_name_for_match(missing) if key in index and index[key]: return index[key][0] candidates = difflib.get_close_matches(key, list(index.keys()), n=1, cutoff=0.7) if not candidates: return None best_key = candidates[0] if index[best_key]: return index[best_key][0] return None DOMAIN_SYNONYMS_TABLE = { "song": "track", "songs": "track", "tracks": "track", "artist": "artist", "artists": "artist", "album": "album", "albums": "album", "order": "invoice", "orders": "invoice", } DOMAIN_SYNONYMS_COLUMN = { "song": "name", "songs": "name", "track": "name", "title": "name", "length": "milliseconds", "duration": "milliseconds", } def try_repair_sql( sql: str, error: str, schema_meta: Dict[str, Any] ) -> Optional[str]: """ Intenta reparar nombres de tablas/columnas basándose en el esquema real. Compatible con mensajes de Postgres y también con los de SQLite (por si algún día reusamos la lógica). """ tables_info = schema_meta["tables"] idx = _build_schema_indexes(tables_info) table_index = idx["table_index"] column_index = idx["column_index"] repaired_sql = sql changed = False missing_table = None missing_column = None m_t = re.search(r'relation "([\w\.]+)" does not exist', error, re.IGNORECASE) if not m_t: m_t = re.search(r"no such table: ([\w\.]+)", error) if m_t: missing_table = m_t.group(1) m_c = re.search(r'column "([\w\.]+)" does not exist', error, re.IGNORECASE) if not m_c: m_c = re.search(r"no such column: ([\w\.]+)", error) if m_c: missing_column = m_c.group(1) if missing_table: short = missing_table.split(".")[-1] syn = DOMAIN_SYNONYMS_TABLE.get(short.lower()) target = None if syn: target = _best_match_name(syn, table_index) or syn if not target: target = _best_match_name(short, table_index) if target: pattern = r"\b" + re.escape(short) + r"\b" new_sql = re.sub(pattern, target, repaired_sql) if new_sql != repaired_sql: repaired_sql = new_sql changed = True if missing_column: short = missing_column.split(".")[-1] syn = DOMAIN_SYNONYMS_COLUMN.get(short.lower()) target = None if syn: target = _best_match_name(syn, column_index) or syn if not target: target = _best_match_name(short, column_index) if target: pattern = r"\b" + re.escape(short) + r"\b" new_sql = re.sub(pattern, target, repaired_sql) if new_sql != repaired_sql: repaired_sql = new_sql changed = True if not changed: return None return repaired_sql # ====================================================== # 5) Prompt NL→SQL + re-ranking # ====================================================== def build_prompt(question_en: str, db_id: str, schema_str: str) -> str: return ( f"translate to SQL: {question_en} | " f"db: {db_id} | schema: {schema_str} | " f"note: use JOIN when foreign keys link tables" ) def normalize_score(raw: float) -> float: """Normaliza el score logit del modelo a un porcentaje 0-100.""" norm = (raw + 20) / 25 norm = max(0, min(1, norm)) return round(norm * 100, 2) def nl2sql_with_rerank(question: str, conn_id: str) -> Dict[str, Any]: if conn_id not in sql_manager.connections: raise HTTPException( status_code=404, detail=f"connection_id '{conn_id}' no registrado" ) meta = sql_manager.get_schema(conn_id) tables_info = meta["tables"] parts = [] for t, info in tables_info.items(): cols = info.get("columns", []) parts.append(f"{t}(" + ", ".join(cols) + ")") schema_str = " ; ".join(parts) if parts else "(empty_schema)" detected = detect_language(question) question_en = translate_es_to_en(question) if detected == "es" else question prompt = build_prompt(question_en, db_id=conn_id, schema_str=schema_str) if t5_model is None: load_nl2sql_model() inputs = t5_tokenizer( [prompt], return_tensors="pt", truncation=True, max_length=768 ).to(DEVICE) num_beams = 6 num_return = 6 with torch.no_grad(): out = t5_model.generate( **inputs, max_length=220, num_beams=num_beams, num_return_sequences=num_return, return_dict_in_generate=True, output_scores=True, ) sequences = out.sequences scores = out.sequences_scores if scores is not None: scores = scores.cpu().tolist() else: scores = [0.0] * sequences.size(0) candidates: List[Dict[str, Any]] = [] best = None best_exec = False best_score = -1e9 for i in range(sequences.size(0)): raw_sql = t5_tokenizer.decode( sequences[i], skip_special_tokens=True ).strip() cand: Dict[str, Any] = { "sql": raw_sql, "score": float(scores[i]), "repaired_from": None, "repair_note": None, "raw_sql_model": raw_sql, } exec_info = sql_manager.execute_sql(conn_id, raw_sql) err_lower = (exec_info["error"] or "").lower() if (not exec_info["ok"]) and ( "no such table" in err_lower or "no such column" in err_lower or "does not exist" in err_lower ): current_sql = raw_sql last_error = exec_info["error"] or "" for step in range(1, 4): repaired_sql = try_repair_sql(current_sql, last_error, meta) if not repaired_sql or repaired_sql == current_sql: break exec_info2 = sql_manager.execute_sql(conn_id, repaired_sql) cand["repaired_from"] = ( current_sql if cand["repaired_from"] is None else cand["repaired_from"] ) cand["repair_note"] = ( f"auto-repair (table/column name, step {step})" ) cand["sql"] = repaired_sql exec_info = exec_info2 current_sql = repaired_sql if exec_info2["ok"]: break last_error = exec_info2["error"] or "" cand["exec_ok"] = exec_info["ok"] cand["exec_error"] = exec_info["error"] cand["rows_preview"] = ( exec_info["rows"][:5] if exec_info["ok"] and exec_info["rows"] else None ) cand["columns"] = exec_info["columns"] candidates.append(cand) if exec_info["ok"]: if (not best_exec) or cand["score"] > best_score: best_exec = True best_score = cand["score"] best = cand elif not best_exec and cand["score"] > best_score: best_score = cand["score"] best = cand if best is None and candidates: best = candidates[0] return { "question_original": question, "detected_language": detected, "question_en": question_en, "connection_id": conn_id, "schema_summary": schema_str, "best_sql": best["sql"], "best_exec_ok": best.get("exec_ok", False), "best_exec_error": best.get("exec_error"), "best_rows_preview": best.get("rows_preview"), "best_columns": best.get("columns", []), "candidates": candidates, "score_percent": normalize_score(best["score"]), } # ====================================================== # 6) Schemas Pydantic # ====================================================== class UploadResponse(BaseModel): connection_id: str label: str db_path: str note: Optional[str] = None class ConnectionInfo(BaseModel): connection_id: str label: str engine: Optional[str] = None db_name: Optional[str] = None # ya no usamos archivo, pero mantenemos campo class SchemaResponse(BaseModel): connection_id: str schema_summary: str tables: Dict[str, Dict[str, List[str]]] class PreviewResponse(BaseModel): connection_id: str table: str columns: List[str] rows: List[List[Any]] class InferRequest(BaseModel): connection_id: str question: str class InferResponse(BaseModel): question_original: str detected_language: str question_en: str connection_id: str schema_summary: str best_sql: str best_exec_ok: bool best_exec_error: Optional[str] best_rows_preview: Optional[List[List[Any]]] best_columns: List[str] candidates: List[Dict[str, Any]] class SpeechInferResponse(BaseModel): transcript: str result: InferResponse # ====================================================== # 7) Helpers para /upload (.sql y .zip) # ====================================================== def _combine_sql_files_from_zip(zip_bytes: bytes) -> str: """ Lee un ZIP, se queda solo con los .sql y los concatena. Orden: 1) archivos con 'schema' o 'structure' en el nombre 2) el resto (data, etc.) """ try: with zipfile.ZipFile(io.BytesIO(zip_bytes)) as zf: names = [info.filename for info in zf.infolist() if not info.is_dir()] sql_names = [n for n in names if n.lower().endswith(".sql")] if not sql_names: raise ValueError("El ZIP no contiene archivos .sql utilizables.") def sort_key(name: str) -> int: nl = name.lower() if "schema" in nl or "structure" in nl: return 0 return 1 sql_names_sorted = sorted(sql_names, key=sort_key) parts: List[str] = [] for name in sql_names_sorted: with zf.open(name) as f: text = f.read().decode("utf-8", errors="ignore") parts.append(f"-- FILE: {name}\n{text}\n") return "\n\n".join(parts) except zipfile.BadZipFile: raise ValueError("Archivo ZIP inválido o corrupto.") # ====================================================== # 8) Endpoints FastAPI # ====================================================== @app.on_event("startup") async def startup_event(): load_nl2sql_model() print("✅ Backend NL2SQL inicializado.") print(f"MODEL_DIR={MODEL_DIR}, DEVICE={DEVICE}") print(f"Conexiones activas al inicio: {len(sql_manager.connections)}") @app.post("/upload", response_model=UploadResponse) async def upload_database( mode: str = Form("full"), # "full" | "schema_data" | "zip" db_files: List[UploadFile] = File(...), # uno o varios archivos authorization: Optional[str] = Header(None), ): """ Sube uno o varios archivos SQL/ZIP según el modo: - mode = "full": * Espera EXACTAMENTE 1 archivo .sql * El .sql trae esquema + datos juntos (dump de PostgreSQL) - mode = "schema_data": * Espera EXACTAMENTE 2 archivos .sql * Uno de esquema y otro de datos (el orden lo resolvemos nosotros) - mode = "zip": * Espera EXACTAMENTE 1 archivo .zip * Dentro del zip buscamos SOLO archivos .sql (ignoramos el resto) """ if authorization is None: raise HTTPException(401, "Missing Authorization header") jwt = authorization.replace("Bearer ", "") user = supabase.auth.get_user(jwt) if not user or not user.user: raise HTTPException(401, "Invalid Supabase token") if not db_files: raise HTTPException(400, "No se recibió ningún archivo.") mode = mode.lower().strip() # ======================= # MODO 1: FULL (.sql único) # ======================= if mode == "full": if len(db_files) != 1: raise HTTPException( 400, "Modo FULL requiere exactamente 1 archivo .sql." ) file = db_files[0] filename = file.filename or "" if not filename.lower().endswith(".sql"): raise HTTPException(400, "Modo FULL solo acepta archivos .sql.") contents = await file.read() sql_text = contents.decode("utf-8", errors="ignore") # ==================================== # MODO 2: ESQUEMA + DATOS (2 archivos) # ==================================== elif mode == "schema_data": if len(db_files) != 2: raise HTTPException( 400, "Modo esquema+datos requiere exactamente 2 archivos .sql.", ) print("FILES RECEIVED:", [f.filename for f in db_files]) files_info: List[tuple[str, str]] = [] for f in db_files: fname = f.filename or "" if not fname.lower().endswith(".sql"): raise HTTPException(400, "Todos los archivos deben ser .sql.") contents = await f.read() files_info.append( (fname, contents.decode("utf-8", errors="ignore")) ) # Intentamos poner primero el esquema y luego los datos def weight(name: str) -> int: nl = name.lower().replace("-", "_").replace(" ", "_") if any(x in nl for x in ["schema", "structure", "ddl"]): return 0 if any(x in nl for x in ["data", "dml", "insert", "rows"]): return 1 return 2 files_info_sorted = sorted(files_info, key=lambda x: weight(x[0])) sql_parts: List[str] = [] for fname, text in files_info_sorted: sql_parts.append(f"-- FILE: {fname}\n{text}\n") sql_text = "\n\n".join(sql_parts) # usamos el nombre del primer archivo como label "principal" filename = files_info_sorted[0][0] # ================== # MODO 3: ZIP (.zip) # ================== elif mode == "zip": if len(db_files) != 1: raise HTTPException( 400, "Modo ZIP requiere exactamente 1 archivo .zip." ) file = db_files[0] filename = file.filename or "" if not filename.lower().endswith(".zip"): raise HTTPException(400, "Modo ZIP solo acepta archivos .zip.") contents = await file.read() # tu helper ya ignora carpetas y solo concatena .sql sql_text = _combine_sql_files_from_zip(contents) else: raise HTTPException(400, f"Modo no soportado: {mode}") # --- crear schema dinámico en Postgres (Neon) --- try: conn_id = sql_manager.create_database_from_dump( label=filename, sql_text=sql_text ) except Exception as e: raise HTTPException(400, f"Error creando BD: {e}") meta = sql_manager.connections[conn_id] # --- guardar metadatos en Supabase (sin romper el upload si falla) --- try: supabase.table("databases").insert( { "user_id": user.user.id, "filename": filename, "engine": meta["engine"], "connection_id": conn_id, } ).execute() except Exception as e: # Solo logeamos, pero NO rompemos el endpoint print("[WARN] No se pudieron guardar metadatos en Supabase:", repr(e)) return UploadResponse( connection_id=conn_id, label=filename, db_path=f"{meta['engine']}://schema/{meta['schema']}", note="Database schema created in Neon and indexed in Supabase.", ) @app.get("/connections", response_model=List[ConnectionInfo]) async def list_connections(): return [ ConnectionInfo( connection_id=cid, label=meta.get("label", ""), engine=meta.get("engine"), db_name=meta.get("schema"), # usamos schema como "nombre" ) for cid, meta in sql_manager.connections.items() ] @app.get("/schema/{connection_id}", response_model=SchemaResponse) async def get_schema(connection_id: str): if connection_id not in sql_manager.connections: raise HTTPException(status_code=404, detail="connection_id no encontrado") meta = sql_manager.get_schema(connection_id) tables = meta["tables"] parts = [] for t, info in tables.items(): cols = info.get("columns", []) parts.append(f"{t}(" + ", ".join(cols) + ")") schema_str = " ; ".join(parts) if parts else "(empty_schema)" return SchemaResponse( connection_id=connection_id, schema_summary=schema_str, tables=tables, ) @app.get("/preview/{connection_id}/{table}", response_model=PreviewResponse) async def preview_table(connection_id: str, table: str, limit: int = 20): if connection_id not in sql_manager.connections: raise HTTPException(status_code=404, detail="connection_id no encontrado") try: preview = sql_manager.get_preview(connection_id, table, limit) except Exception as e: raise HTTPException( status_code=400, detail=f"Error al leer tabla '{table}': {e}" ) return PreviewResponse( connection_id=connection_id, table=table, columns=preview["columns"], rows=preview["rows"], ) @app.post("/infer", response_model=InferResponse) async def infer_sql( req: InferRequest, authorization: Optional[str] = Header(None), ): if authorization is None: raise HTTPException(401, "Missing Authorization header") jwt = authorization.replace("Bearer ", "") user = supabase.auth.get_user(jwt) if not user or not user.user: raise HTTPException(401, "Invalid Supabase token") result = nl2sql_with_rerank(req.question, req.connection_id) score = normalize_score(result["candidates"][0]["score"]) db_row = ( supabase.table("databases") .select("id") .eq("connection_id", req.connection_id) .eq("user_id", user.user.id) .execute() ) db_id = db_row.data[0]["id"] if db_row.data else None supabase.table("queries").insert( { "user_id": user.user.id, "db_id": db_id, "nl": result["question_original"], "sql_generated": result["best_sql"], "sql_repaired": result["candidates"][0]["sql"], "execution_ok": result["best_exec_ok"], "error": result["best_exec_error"], "rows_preview": result["best_rows_preview"], "score": score, } ).execute() result["score_percent"] = score return InferResponse(**result) @app.post("/speech-infer", response_model=SpeechInferResponse) async def speech_infer( connection_id: str = Form(...), audio: UploadFile = File(...), ): if openai_client is None: raise HTTPException( status_code=500, detail="OPENAI_API_KEY no está configurado en el backend.", ) if audio.content_type is None: raise HTTPException(status_code=400, detail="Archivo de audio inválido.") try: with tempfile.NamedTemporaryFile(delete=False, suffix=".webm") as tmp: tmp.write(await audio.read()) tmp_path = tmp.name except Exception: raise HTTPException( status_code=500, detail="No se pudo procesar el audio recibido." ) try: with open(tmp_path, "rb") as f: transcription = openai_client.audio.transcriptions.create( model="gpt-4o-transcribe", file=f, ) transcript_text: str = transcription.text except Exception as e: raise HTTPException(status_code=500, detail=f"Error al transcribir audio: {e}") result_dict = nl2sql_with_rerank(transcript_text, connection_id) infer_result = InferResponse(**result_dict) return SpeechInferResponse( transcript=transcript_text, result=infer_result, ) @app.get("/health") async def health(): return { "status": "ok", "model_loaded": t5_model is not None, "connections": len(sql_manager.connections), "device": str(DEVICE), "engine": "postgres", } @app.get("/history") def get_history(authorization: Optional[str] = Header(None)): if authorization is None: raise HTTPException(401, "Missing Authorization") jwt = authorization.replace("Bearer ", "") user = supabase.auth.get_user(jwt) rows = ( supabase.table("queries") .select("*") .eq("user_id", user.user.id) .order("created_at", desc=True) .execute() ) return rows.data @app.get("/my-databases") def get_my_databases(authorization: Optional[str] = Header(None)): if authorization is None: raise HTTPException(401, "Missing Authorization") jwt = authorization.replace("Bearer ", "") user = supabase.auth.get_user(jwt) rows = ( supabase.table("databases") .select("*") .eq("user_id", user.user.id) .execute() ) return rows.data @app.get("/") async def root(): return { "message": "NL2SQL T5-large backend running.", "endpoints": [ "POST /upload (subir .sql o .zip con .sql → crea schema en Supabase)", "GET /connections (listar BDs subidas en esta instancia)", "GET /schema/{id} (esquema resumido)", "GET /preview/{id}/{t} (preview de tabla)", "POST /infer (NL→SQL + ejecución en BD)", "POST /speech-infer (voz → NL→SQL + ejecución)", "GET /history (historial de consultas en Supabase)", "GET /my-databases (BDs del usuario en Supabase)", "GET /health (estado del backend)", "GET /docs (OpenAPI UI)", ], }