NanoDiffusion / app.py
thejagstudio's picture
Update app.py
76cfc68
import gradio as gr
import spaces
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
import math
import os
import pickle
import requests
import textwrap
import subprocess
import shutil
import time
from dataclasses import dataclass
from typing import Optional
from transformers import AutoTokenizer
# ==============================================================================
# ------------------------- VERSION 1: SHARED SETUP ----------------------------
# ==============================================================================
def setup_environment():
"""Checks for and sets up the necessary data for V1."""
nano_gpt_repo_path = 'nanoGPT'
data_dir_path = 'shakespeare_char'
meta_path = os.path.join(data_dir_path, 'meta.pkl')
if os.path.exists(meta_path):
return
print("Required data not found. Starting one-time setup...")
if not os.path.exists(nano_gpt_repo_path):
try:
subprocess.run(['git', 'clone', 'https://github.com/karpathy/nanoGPT.git'], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
print(f"Error cloning repository: {e.stderr}")
pass
source_data_dir = os.path.join(nano_gpt_repo_path, 'data', 'shakespeare_char')
if not os.path.exists(data_dir_path) and os.path.exists(source_data_dir):
shutil.copytree(source_data_dir, data_dir_path)
# Check if we can run prepare
prepare_script_path = os.path.join(data_dir_path, 'prepare.py')
if os.path.exists(prepare_script_path) and not os.path.exists(meta_path):
subprocess.run(['python', 'prepare.py'], check=True, cwd=data_dir_path, capture_output=True, text=True)
setup_environment()
def download_file(url, filename):
if os.path.exists(filename):
return
print(f"Downloading '{filename}'...")
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(filename, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
except requests.exceptions.RequestException as e:
print(f"Error downloading {url}: {e}")
# ==============================================================================
# ---------------------- VERSION 1: ARCHITECTURE & LOGIC -----------------------
# ==============================================================================
# V1 Constants and Meta Loading
v1_data_dir = './shakespeare_char/'
v1_meta_url = 'https://huggingface.co/spaces/thejagstudio/NanoDiffusion/resolve/main/meta.pkl'
v1_meta_path = 'meta.pkl'
download_file(v1_meta_url, v1_meta_path)
v1_vocab_size = 65 # Fallback
v1_itos = {}
v1_stoi = {}
if os.path.exists(v1_meta_path):
with open(v1_meta_path, 'rb') as f:
meta = pickle.load(f)
v1_vocab_size = meta['vocab_size']
v1_itos = meta['itos']
v1_stoi = meta['stoi']
v1_context_length = 256
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def v1_decode(indices_tensor: torch.Tensor):
if indices_tensor.dim() > 1:
indices_tensor = indices_tensor.squeeze(0)
indices = indices_tensor.cpu().numpy()
return ''.join([v1_itos.get(i, '?') for i in indices])
def wrap_text(long_text, width=80):
paragraphs = long_text.splitlines()
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
return "\n".join(wrapped)
@dataclass
class V1_GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
cond_dim: int = 64
dropout: float = 0.0
bias: bool = False
class V1_MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class V1_SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
def v1_modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
def v1_bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
if bias is not None:
out = scale * (x + bias)
else:
out = scale * x
if residual is not None:
out = residual + out
return out
class V1_DDiTBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.attn = V1_SelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.mlp = V1_MLP(config)
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
x_skip = x
x = v1_modulate(self.ln_1(x), shift_msa, scale_msa)
x = self.attn(x)
x = v1_bias_add_scale(self.attn(self.ln_1(x)), None, gate_msa, x_skip)
x = v1_bias_add_scale(self.mlp(v1_modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
return x
class V1_DDitFinalLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = v1_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class V1_TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class V1_GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.sigma_map = V1_TimestepEmbedder(config.cond_dim)
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([V1_DDiTBlock(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd, bias=config.bias),
))
self.lm_head = V1_DDitFinalLayer(config)
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, sigma):
sigma = sigma.reshape(-1)
b, t = idx.size()
c = F.silu(self.sigma_map(sigma))
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x, c)
x = self.transformer.ln_f(x)
x = self.lm_head(x, c)
x = torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
return x
class V1_GeometricNoise:
def __init__(self, sigma_min=1e-4, sigma_max=20):
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max]).to(device)
def rate_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
def total_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
def __call__(self, t):
return self.total_noise(t), self.rate_noise(t)
# --- V1 Inference Logic ---
def v1_transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / v1_vocab_size
trans = torch.ones(*x_t.shape, v1_vocab_size, device=x_t.device) * base_prob
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
trans = trans.scatter(-1, x_t[..., None], diag_fill)
return trans
def v1_staggered_score(score, delta_sigma):
exp_factor = torch.exp(-delta_sigma)[..., None]
correction = ((exp_factor - 1) / (v1_vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
return correction + score / exp_factor
def v1_sample_categorical(probs: torch.Tensor) -> torch.Tensor:
eps = 1e-10
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
# --- V1 Model Loading ---
print("Initializing V1 Model...")
v1_model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
bias=False, vocab_size=v1_vocab_size, block_size=v1_context_length, dropout=0.2)
v1_config = V1_GPTConfig(**v1_model_args)
v1_model = V1_GPT(v1_config)
try:
v1_model.load_state_dict(
torch.hub.load_state_dict_from_url(
'https://huggingface.co/spaces/thejagstudio/NanoDiffusion/resolve/main/final_model.pth?download=true',
map_location=device
)
)
v1_model.to(device)
v1_model.eval()
print("V1 Model loaded successfully.")
except Exception as e:
print(f"Failed to load V1 model: {e}")
v1_model = None
v1_noise = V1_GeometricNoise(sigma_min=1e-4, sigma_max=20)
def v1_generate_stream(steps, speed):
"""
Generator function for V1 that yields frames directly.
Combined logic of generation and replay to allow for immediate stopping.
"""
if v1_model is None:
yield "Error: V1 Model not loaded"
return
steps = int(steps)
speed = float(speed)
eps = 1e-5
# Calculate delay based on speed slider (similar to V2)
# 0.5 is base constant, speed scales it down
delay = 0.5 / max(speed, 0.1)
x = torch.randint(0, v1_vocab_size, (1, v1_context_length), device=device)
initial_text = f"--- Initial Random Noise ---\n\n{wrap_text(v1_decode(x[0]))}"
yield initial_text
time.sleep(delay)
timesteps = torch.linspace(1, eps, steps + 1, device=device)
step_size = (1 - eps) / steps
with torch.no_grad():
for i in range(steps):
t = timesteps[i] * torch.ones(x.shape[0], 1, device=device)
curr_sigma_bar = v1_noise(t)[0]
next_sigma_bar = v1_noise(t - step_size)[0]
delta_sigma = curr_sigma_bar - next_sigma_bar
log_score = v1_model(x, curr_sigma_bar)
score = torch.exp(log_score)
stag_score = v1_staggered_score(score, delta_sigma)
probs = stag_score * v1_transition(x, delta_sigma)
x = v1_sample_categorical(probs)
progress_text = f"--- Denoising Step {i + 1}/{steps} ---\n\n{wrap_text(v1_decode(x[0]))}"
yield progress_text
# Artificial delay for visualization
if speed < 20:
time.sleep(delay)
t = timesteps[steps] * torch.ones(x.shape[0], 1, device=device)
curr_sigma_bar = v1_noise(t)[0]
delta_sigma = curr_sigma_bar
log_score = v1_model(x, curr_sigma_bar)
score = torch.exp(log_score)
stag_score = v1_staggered_score(score, delta_sigma)
probs = stag_score * v1_transition(x, delta_sigma)
x = v1_sample_categorical(probs)
final_text = f"--- Final Denoised Text (Step {steps}) ---\n\n{wrap_text(v1_decode(x[0]))}"
yield final_text
# ==============================================================================
# ---------------------- VERSION 2: ARCHITECTURE & LOGIC -----------------------
# ==============================================================================
# PLEASE UPDATE THIS PATH TO YOUR ACTUAL LOCAL FILE OR URL
V2_MODEL_PATH = "checkpoints/model_fp32.pt"
class V2_RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
var = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps)
return self.weight * x
class V2_RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=16384, base=100000, scaling_factor=1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.base = base
self.max_position_embeddings = max_position_embeddings
self.inv_freq = None
self._cache = {}
def _update_freqs(self, device):
base = self.base * (self.scaling_factor ** (self.dim / (self.dim - 2)))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.inv_freq = inv_freq
def forward(self, x, seq_len=None):
if seq_len is None:
seq_len = x.shape[-2]
if self.inv_freq is None or self.inv_freq.device != x.device:
self._update_freqs(x.device)
cache_key = (seq_len, x.device, x.dtype)
if cache_key in self._cache:
return self._cache[cache_key]
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()[None, None, :, :]
sin = emb.sin()[None, None, :, :]
self._cache[cache_key] = (cos, sin)
if len(self._cache) > 10:
self._cache.pop(next(iter(self._cache)))
return cos, sin
def v2_apply_rotary_pos_emb(q, k, cos, sin):
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class V2_DiffusionAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.use_flash_attn = config.use_flash_attn
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(self, hidden_states, freqs_cis, attention_mask=None, past_kv=None):
bsz, q_len, _ = hidden_states.size()
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = freqs_cis
cos = cos[:, :, :q_len, :]
sin = sin[:, :, :q_len, :]
q, k = v2_apply_rotary_pos_emb(q, k, cos, sin)
if past_kv is not None:
cache_k, cache_v = past_kv
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
current_kv = (k, v)
k = k.repeat_interleave(self.num_key_value_groups, dim=1)
v = v.repeat_interleave(self.num_key_value_groups, dim=1)
attn_mask = None
if attention_mask is not None:
attn_mask = attention_mask[:, None, None, :].to(dtype=q.dtype)
attn_mask = (1.0 - attn_mask) * torch.finfo(q.dtype).min
output = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=False
)
output = output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
return self.o_proj(output), current_kv
class V2_MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class V2_BlockDiffusionBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = V2_DiffusionAttention(config)
self.mlp = V2_MLP(config)
self.input_layernorm = V2_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = V2_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.use_activation_checkpointing = config.use_activation_checkpointing
def forward(self, hidden_states, freqs_cis, attention_mask, past_kv):
return self._forward(hidden_states, freqs_cis, attention_mask, past_kv)
def _forward(self, hidden_states, freqs_cis, attention_mask, past_kv):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attn_out, new_kv = self.self_attn(hidden_states, freqs_cis, attention_mask, past_kv)
hidden_states = residual + attn_out
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + self.mlp(hidden_states)
return hidden_states, new_kv
@dataclass
class V2_ModelConfig:
vocab_size: int = 151936
hidden_size: int = 1024
intermediate_size: int = 2816
num_hidden_layers: int = 16
num_attention_heads: int = 16
num_key_value_heads: int = 4
max_position_embeddings: int = 16384
rms_norm_eps: float = 1e-6
rope_theta: float = 100000.0
pad_token_id: int = 0
mask_token_id: int = 1
use_flash_attn: bool = True
use_activation_checkpointing: bool = False
attention_dropout: float = 0.0
hidden_dropout: float = 0.0
ModelConfig = V2_ModelConfig
class V2_DiffusionLLM(nn.Module):
def __init__(self, config: V2_ModelConfig):
super().__init__()
self.config = config
pad_idx = config.pad_token_id if config.pad_token_id < config.vocab_size else None
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=pad_idx)
self.layers = nn.ModuleList([V2_BlockDiffusionBlock(config) for _ in range(config.num_hidden_layers)])
self.norm = V2_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rotary_emb = V2_RotaryEmbedding(
config.hidden_size // config.num_attention_heads,
config.max_position_embeddings
)
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids, attention_mask=None, past_key_values=None):
bsz, seqlen = input_ids.shape
hidden_states = self.embed_tokens(input_ids)
freqs_cis = self.rotary_emb(hidden_states, seq_len=seqlen)
if past_key_values is None:
past_key_values = [None] * len(self.layers)
new_kvs = []
for i, layer in enumerate(self.layers):
hidden_states, kv = layer(hidden_states, freqs_cis, attention_mask, past_key_values[i])
new_kvs.append(kv)
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
return logits, new_kvs
DiffusionLLM = V2_DiffusionLLM
# --- V2 Loading Logic ---
print("Initializing V2 components...")
v2_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B")
if v2_tokenizer.pad_token is None:
v2_tokenizer.pad_token = v2_tokenizer.eos_token
v2_model = None
v2_config = None
if os.path.exists(V2_MODEL_PATH):
print(f"Loading V2 model from {V2_MODEL_PATH}...")
try:
checkpoint = torch.load(V2_MODEL_PATH, map_location=device, weights_only=False)
v2_config = checkpoint['config']
v2_model = V2_DiffusionLLM(v2_config)
state_dict = checkpoint['model_state']
state_dict = {k: v.float() for k, v in state_dict.items()}
v2_model.load_state_dict(state_dict)
v2_model = v2_model.to(device)
v2_model.eval()
print("V2 Model loaded.")
except Exception as e:
print(f"Error loading V2 model: {e}")
else:
print(f"V2 Model file not found at {V2_MODEL_PATH}. Version 2 tab will not work without it.")
@torch.no_grad()
def v2_generate_block_diffusion(prompt, steps, block_size, max_new_tokens, replay_speed):
"""
Refactored to yield frames for real-time streaming.
"""
if v2_model is None:
yield "Error: V2 Model not found. Check path."
return
v2_model.eval()
# Handle inputs
steps = int(steps)
block_size = int(block_size)
max_new_tokens = int(max_new_tokens)
speed = float(replay_speed)
prompt_ids = v2_tokenizer.encode(prompt, return_tensors="pt").to(device)
config = v2_model.config
num_blocks = max_new_tokens // block_size
context_ids = prompt_ids
# Helper params
temperature = 1.0
top_k = 40
top_p = 0.9
repetition_penalty = 1.2
# Calculate delay based on speed slider
delay = 0.5 / max(speed, 0.1)
for block_idx in range(num_blocks):
mask_block = torch.full((1, block_size), config.mask_token_id, device=device)
is_masked = torch.ones(1, block_size, dtype=torch.bool, device=device)
for step_idx in range(steps):
# --- SNAPSHOT & YIELD ---
# Decode context
ctx_str = v2_tokenizer.decode(context_ids[0], skip_special_tokens=True)
# Decode block with masking visual
block_tokens = mask_block[0].tolist()
block_vis = []
for i, tid in enumerate(block_tokens):
if is_masked[0, i]:
block_vis.append("β–‘") # Mask symbol
else:
block_vis.append(v2_tokenizer.decode([tid], skip_special_tokens=False))
block_str = "".join(block_vis)
frame_text = (f"--- Generating Block {block_idx+1}/{num_blocks} | Step {step_idx+1}/{steps} ---\n\n"
f"{ctx_str}{block_str}")
yield frame_text
# Artificial delay to visualize the step
if speed < 20: # If max speed, skip sleep
time.sleep(delay)
# ------------------------
full_input = torch.cat([context_ids, mask_block], dim=1)
attention_mask = torch.ones_like(full_input, dtype=torch.float32)
logits, _ = v2_model(full_input, attention_mask=attention_mask)
block_logits = logits[:, -block_size:, :]
# Repetition penalty
if repetition_penalty != 1.0:
seen_tokens = set(context_ids[0].tolist())
for i in range(block_size):
if not is_masked[0, i]:
seen_tokens.add(mask_block[0, i].item())
for token_id in seen_tokens:
if token_id < block_logits.shape[-1]:
if block_logits[0, :, token_id].mean() > 0:
block_logits[:, :, token_id] /= repetition_penalty
else:
block_logits[:, :, token_id] *= repetition_penalty
block_logits = block_logits / temperature
# Top-K
if top_k > 0:
top_k_logits, top_k_indices = torch.topk(block_logits, top_k, dim=-1)
block_logits = torch.full_like(block_logits, float('-inf'))
block_logits.scatter_(-1, top_k_indices, top_k_logits)
# Top-P
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(block_logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
block_logits[indices_to_remove] = float('-inf')
probs = F.softmax(block_logits, dim=-1)
probs = torch.nan_to_num(probs, nan=0.0, posinf=0.0, neginf=0.0)
probs = probs.clamp(min=1e-10)
probs = probs / probs.sum(dim=-1, keepdim=True)
sampled_tokens = torch.multinomial(probs.view(-1, probs.size(-1)), num_samples=1)
sampled_tokens = sampled_tokens.view(1, block_size)
confidence = probs.gather(-1, sampled_tokens.unsqueeze(-1)).squeeze(-1)
tokens_to_unmask = max(1, block_size // steps)
if step_idx == steps - 1:
tokens_to_unmask = is_masked.sum().item()
if tokens_to_unmask > 0 and is_masked.sum() > 0:
masked_confidence = confidence.clone()
masked_confidence[~is_masked] = -1.0
num_to_unmask = min(tokens_to_unmask, is_masked.sum().item())
_, top_indices = torch.topk(masked_confidence.view(-1), num_to_unmask)
for idx in top_indices:
mask_block[0, idx] = sampled_tokens[0, idx]
is_masked[0, idx] = False
context_ids = torch.cat([context_ids, mask_block], dim=1)
generated_ids = context_ids[0].tolist()
final_text = v2_tokenizer.decode(generated_ids, skip_special_tokens=True)
yield final_text
# ==============================================================================
# ------------------------------- GRADIO UI ------------------------------------
# ==============================================================================
css = '''.gradio-container > .fillable {max-width: 900px !important}
h3{margin-top: 1em}
p{margin-top: 0}
textarea{font-family: monospace; background-color: #1a1b1e; color: #e0e0e0}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
gr.Markdown("# Diffusion Language Models Playground")
with gr.Tabs():
# --- TAB 1: VERSION 1 (CHAR DIFFUSION) ---
with gr.Tab("Version 1: Character Diffusion (NanoGPT)"):
gr.Markdown("### Tiny 11M parameter character-based continuous diffusion.")
with gr.Row():
with gr.Column(scale=1):
v1_steps = gr.Slider(64, 512, 128, step=1, label="Denoising Steps")
v1_speed = gr.Slider(1, 20, 10, step=1, label="Generation/Replay Speed")
with gr.Row():
v1_btn = gr.Button("Generate", variant="primary")
v1_stop = gr.Button("Stop", variant="stop")
with gr.Column(scale=2):
v1_out = gr.Textbox(label="Generated Text", lines=15, interactive=False)
# V1 Logic: Merged generation and replay for proper stopping
v1_event = v1_btn.click(v1_generate_stream, inputs=[v1_steps, v1_speed], outputs=[v1_out])
v1_stop.click(fn=None, inputs=None, outputs=None, cancels=[v1_event])
# --- TAB 2: VERSION 2 (BLOCK DIFFUSION) ---
with gr.Tab("Version 2: Block Diffusion (LLaDA-style)"):
gr.Markdown("### Block-based diffusion using Qwen tokenizer.")
if v2_model is None:
gr.Warning(f"V2 Model not loaded. Please check path: {V2_MODEL_PATH}")
with gr.Row():
with gr.Column(scale=1):
v2_prompt = gr.Textbox(label="Prompt", value="The king went to the")
v2_steps = gr.Slider(4, 64, 16, step=1, label="Steps per Block")
v2_block_size = gr.Slider(8, 126, 32, step=8, label="Block Size")
v2_max_tokens = gr.Slider(32, 1024, 128, step=32, label="Total New Tokens")
v2_speed = gr.Slider(1, 20, 1, step=1, label="Generation/Replay Speed")
with gr.Row():
v2_btn = gr.Button("Generate", variant="primary")
v2_stop = gr.Button("Stop", variant="stop")
with gr.Column(scale=2):
v2_out = gr.Textbox(label="Generated Text", lines=15, interactive=False)
# V2 Logic
v2_event = v2_btn.click(
v2_generate_block_diffusion,
inputs=[v2_prompt, v2_steps, v2_block_size, v2_max_tokens, v2_speed],
outputs=[v2_out]
)
v2_stop.click(fn=None, inputs=None, outputs=None, cancels=[v2_event])
if __name__ == "__main__":
demo.launch()