Spaces:
Sleeping
Sleeping
Commit
Β·
94f7913
1
Parent(s):
719d04f
Upload 8 files
Browse files- README.md +12 -10
- app-0.py +467 -0
- app.py +798 -0
- final_model.pth +3 -0
- meta.pkl +3 -0
- model_epoch_1.pth +3 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Diffusion GPT
|
| 3 |
+
emoji: ποΈππ
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app-0.py
ADDED
|
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
import numpy as np
|
| 7 |
+
import math
|
| 8 |
+
import os
|
| 9 |
+
import pickle
|
| 10 |
+
import requests
|
| 11 |
+
import textwrap
|
| 12 |
+
import subprocess
|
| 13 |
+
import shutil
|
| 14 |
+
import time
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Optional
|
| 17 |
+
|
| 18 |
+
# --- 1. Automated Environment and Data Setup ---
|
| 19 |
+
|
| 20 |
+
def setup_environment():
|
| 21 |
+
"""
|
| 22 |
+
Checks for and sets up the necessary data and code.
|
| 23 |
+
- Clones nanoGPT if not present.
|
| 24 |
+
- Copies the shakespeare_char dataset directory.
|
| 25 |
+
- Runs the data preparation script to create meta.pkl and binary files.
|
| 26 |
+
This function makes the script self-contained.
|
| 27 |
+
"""
|
| 28 |
+
nano_gpt_repo_path = 'nanoGPT'
|
| 29 |
+
data_dir_path = 'shakespeare_char'
|
| 30 |
+
meta_path = os.path.join(data_dir_path, 'meta.pkl')
|
| 31 |
+
|
| 32 |
+
if os.path.exists(meta_path):
|
| 33 |
+
print("Dataset and metadata found. Skipping setup.")
|
| 34 |
+
return
|
| 35 |
+
|
| 36 |
+
print("Required data not found. Starting one-time setup...")
|
| 37 |
+
|
| 38 |
+
if not os.path.exists(nano_gpt_repo_path):
|
| 39 |
+
print(f"Cloning nanoGPT repository...")
|
| 40 |
+
try:
|
| 41 |
+
subprocess.run(
|
| 42 |
+
['git', 'clone', 'https://github.com/karpathy/nanoGPT.git'],
|
| 43 |
+
check=True, capture_output=True, text=True
|
| 44 |
+
)
|
| 45 |
+
print("Cloned successfully.")
|
| 46 |
+
except subprocess.CalledProcessError as e:
|
| 47 |
+
print(f"Error cloning repository: {e.stderr}")
|
| 48 |
+
raise
|
| 49 |
+
else:
|
| 50 |
+
print("nanoGPT repository already exists.")
|
| 51 |
+
|
| 52 |
+
source_data_dir = os.path.join(nano_gpt_repo_path, 'data', 'shakespeare_char')
|
| 53 |
+
if not os.path.exists(data_dir_path):
|
| 54 |
+
print(f"Copying '{source_data_dir}' to '{data_dir_path}'...")
|
| 55 |
+
shutil.copytree(source_data_dir, data_dir_path)
|
| 56 |
+
print("Copied successfully.")
|
| 57 |
+
else:
|
| 58 |
+
print(f"'{data_dir_path}' directory already exists.")
|
| 59 |
+
|
| 60 |
+
prepare_script_path = os.path.join(data_dir_path, 'prepare.py')
|
| 61 |
+
if not os.path.exists(meta_path):
|
| 62 |
+
print(f"Running data preparation script: '{prepare_script_path}'...")
|
| 63 |
+
try:
|
| 64 |
+
subprocess.run(
|
| 65 |
+
['python', 'prepare.py'],
|
| 66 |
+
check=True, cwd=data_dir_path, capture_output=True, text=True
|
| 67 |
+
)
|
| 68 |
+
print("Data preparation script finished successfully.")
|
| 69 |
+
except subprocess.CalledProcessError as e:
|
| 70 |
+
print(f"Error running prepare.py: {e.stderr}")
|
| 71 |
+
raise
|
| 72 |
+
|
| 73 |
+
print("Setup complete.")
|
| 74 |
+
|
| 75 |
+
setup_environment()
|
| 76 |
+
|
| 77 |
+
# --- 2. Global Setup & Helper Functions ---
|
| 78 |
+
|
| 79 |
+
data_dir = './shakespeare_char/'
|
| 80 |
+
def download_file(url, filename):
|
| 81 |
+
"""Downloads a file from a URL if it doesn't exist."""
|
| 82 |
+
if os.path.exists(filename):
|
| 83 |
+
print(f"'{filename}' already exists. Skipping download.")
|
| 84 |
+
return
|
| 85 |
+
print(f"Downloading '{filename}' from '{url}'...")
|
| 86 |
+
try:
|
| 87 |
+
response = requests.get(url, stream=True)
|
| 88 |
+
response.raise_for_status() # Check for download errors
|
| 89 |
+
with open(filename, 'wb') as f:
|
| 90 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 91 |
+
f.write(chunk)
|
| 92 |
+
print("Download complete.")
|
| 93 |
+
except requests.exceptions.RequestException as e:
|
| 94 |
+
print(f"Error downloading {url}: {e}")
|
| 95 |
+
raise
|
| 96 |
+
|
| 97 |
+
# Define file URLs and local paths
|
| 98 |
+
meta_url = 'https://huggingface.co/spaces/thejagstudio/diffusion-gpt/resolve/main/meta.pkl'
|
| 99 |
+
meta_path = 'meta.pkl'
|
| 100 |
+
download_file(meta_url, meta_path)
|
| 101 |
+
with open(meta_path, 'rb') as f:
|
| 102 |
+
meta = pickle.load(f)
|
| 103 |
+
|
| 104 |
+
vocab_size = meta['vocab_size']
|
| 105 |
+
itos = meta['itos']
|
| 106 |
+
stoi = meta['stoi']
|
| 107 |
+
context_length = 256
|
| 108 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 109 |
+
|
| 110 |
+
def decode(indices_tensor: torch.Tensor):
|
| 111 |
+
if indices_tensor.dim() > 1:
|
| 112 |
+
indices_tensor = indices_tensor.squeeze(0)
|
| 113 |
+
indices = indices_tensor.cpu().numpy()
|
| 114 |
+
return ''.join([itos.get(i, '?') for i in indices])
|
| 115 |
+
|
| 116 |
+
def wrap_text(long_text, width=80):
|
| 117 |
+
paragraphs = long_text.splitlines()
|
| 118 |
+
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
|
| 119 |
+
return "\n".join(wrapped)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# --- 3. Model Architecture (Identical to Notebook) ---
|
| 123 |
+
|
| 124 |
+
@dataclass
|
| 125 |
+
class GPTConfig:
|
| 126 |
+
block_size: int = 1024
|
| 127 |
+
vocab_size: int = 50304
|
| 128 |
+
n_layer: int = 12
|
| 129 |
+
n_head: int = 12
|
| 130 |
+
n_embd: int = 768
|
| 131 |
+
cond_dim: int = 64
|
| 132 |
+
dropout: float = 0.0
|
| 133 |
+
bias: bool = False
|
| 134 |
+
|
| 135 |
+
class MLP(nn.Module):
|
| 136 |
+
def __init__(self, config):
|
| 137 |
+
super().__init__()
|
| 138 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 139 |
+
self.gelu = nn.GELU()
|
| 140 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 141 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
x = self.c_fc(x)
|
| 144 |
+
x = self.gelu(x)
|
| 145 |
+
x = self.c_proj(x)
|
| 146 |
+
x = self.dropout(x)
|
| 147 |
+
return x
|
| 148 |
+
|
| 149 |
+
class SelfAttention(nn.Module):
|
| 150 |
+
def __init__(self, config):
|
| 151 |
+
super().__init__()
|
| 152 |
+
assert config.n_embd % config.n_head == 0
|
| 153 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 154 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 155 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 156 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 157 |
+
self.n_head = config.n_head
|
| 158 |
+
self.n_embd = config.n_embd
|
| 159 |
+
self.dropout = config.dropout
|
| 160 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
| 161 |
+
def forward(self, x):
|
| 162 |
+
B, T, C = x.size()
|
| 163 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 164 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 165 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 166 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 167 |
+
if self.flash:
|
| 168 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
|
| 169 |
+
else:
|
| 170 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 171 |
+
att = F.softmax(att, dim=-1)
|
| 172 |
+
att = self.attn_dropout(att)
|
| 173 |
+
y = att @ v
|
| 174 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 175 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 176 |
+
return y
|
| 177 |
+
|
| 178 |
+
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
|
| 179 |
+
return x * (1 + scale) + shift
|
| 180 |
+
|
| 181 |
+
def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
|
| 182 |
+
if bias is not None:
|
| 183 |
+
out = scale * (x + bias)
|
| 184 |
+
else:
|
| 185 |
+
out = scale * x
|
| 186 |
+
if residual is not None:
|
| 187 |
+
out = residual + out
|
| 188 |
+
return out
|
| 189 |
+
|
| 190 |
+
class DDiTBlock(nn.Module):
|
| 191 |
+
def __init__(self, config):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 194 |
+
self.attn = SelfAttention(config)
|
| 195 |
+
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 196 |
+
self.mlp = MLP(config)
|
| 197 |
+
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd)
|
| 198 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 199 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 200 |
+
def forward(self, x, c):
|
| 201 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
|
| 202 |
+
x_skip = x
|
| 203 |
+
x = modulate(self.ln_1(x), shift_msa, scale_msa)
|
| 204 |
+
x = self.attn(x)
|
| 205 |
+
x = bias_add_scale(self.attn(self.ln_1(x)), None, gate_msa, x_skip)
|
| 206 |
+
x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
|
| 207 |
+
return x
|
| 208 |
+
|
| 209 |
+
class DDitFinalLayer(nn.Module):
|
| 210 |
+
def __init__(self, config):
|
| 211 |
+
super().__init__()
|
| 212 |
+
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 213 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
| 214 |
+
self.linear.weight.data.zero_()
|
| 215 |
+
self.linear.bias.data.zero_()
|
| 216 |
+
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
|
| 217 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 218 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 219 |
+
def forward(self, x, c):
|
| 220 |
+
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
|
| 221 |
+
x = modulate(self.norm_final(x), shift, scale)
|
| 222 |
+
x = self.linear(x)
|
| 223 |
+
return x
|
| 224 |
+
|
| 225 |
+
class TimestepEmbedder(nn.Module):
|
| 226 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.mlp = nn.Sequential(
|
| 229 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 230 |
+
nn.SiLU(),
|
| 231 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 232 |
+
)
|
| 233 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 234 |
+
@staticmethod
|
| 235 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 236 |
+
half = dim // 2
|
| 237 |
+
freqs = torch.exp(
|
| 238 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 239 |
+
).to(device=t.device)
|
| 240 |
+
args = t[:, None].float() * freqs[None]
|
| 241 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 242 |
+
if dim % 2:
|
| 243 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 244 |
+
return embedding
|
| 245 |
+
def forward(self, t):
|
| 246 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 247 |
+
t_emb = self.mlp(t_freq)
|
| 248 |
+
return t_emb
|
| 249 |
+
|
| 250 |
+
class GPT(nn.Module):
|
| 251 |
+
def __init__(self, config):
|
| 252 |
+
super().__init__()
|
| 253 |
+
assert config.vocab_size is not None
|
| 254 |
+
assert config.block_size is not None
|
| 255 |
+
self.config = config
|
| 256 |
+
self.sigma_map = TimestepEmbedder(config.cond_dim)
|
| 257 |
+
self.transformer = nn.ModuleDict(dict(
|
| 258 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
| 259 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
| 260 |
+
drop = nn.Dropout(config.dropout),
|
| 261 |
+
h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]),
|
| 262 |
+
ln_f = nn.LayerNorm(config.n_embd, bias=config.bias),
|
| 263 |
+
))
|
| 264 |
+
self.lm_head = DDitFinalLayer(config)
|
| 265 |
+
self.apply(self._init_weights)
|
| 266 |
+
for pn, p in self.named_parameters():
|
| 267 |
+
if pn.endswith('c_proj.weight'):
|
| 268 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
| 269 |
+
def _init_weights(self, module):
|
| 270 |
+
if isinstance(module, nn.Linear):
|
| 271 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 272 |
+
if module.bias is not None:
|
| 273 |
+
torch.nn.init.zeros_(module.bias)
|
| 274 |
+
elif isinstance(module, nn.Embedding):
|
| 275 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 276 |
+
def forward(self, idx, sigma):
|
| 277 |
+
sigma = sigma.reshape(-1)
|
| 278 |
+
b, t = idx.size()
|
| 279 |
+
c = F.silu(self.sigma_map(sigma))
|
| 280 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
| 281 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
| 282 |
+
tok_emb = self.transformer.wte(idx)
|
| 283 |
+
pos_emb = self.transformer.wpe(pos)
|
| 284 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 285 |
+
for block in self.transformer.h:
|
| 286 |
+
x = block(x, c)
|
| 287 |
+
x = self.transformer.ln_f(x)
|
| 288 |
+
x = self.lm_head(x, c)
|
| 289 |
+
x = torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
|
| 290 |
+
return x
|
| 291 |
+
|
| 292 |
+
class GeometricNoise:
|
| 293 |
+
def __init__(self, sigma_min=1e-4, sigma_max=20):
|
| 294 |
+
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max]).to(device)
|
| 295 |
+
def rate_noise(self, t):
|
| 296 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
|
| 297 |
+
def total_noise(self, t):
|
| 298 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
|
| 299 |
+
def __call__(self, t):
|
| 300 |
+
return self.total_noise(t), self.rate_noise(t)
|
| 301 |
+
|
| 302 |
+
# --- 4. Inference & Sampling Logic (Identical to Notebook) ---
|
| 303 |
+
|
| 304 |
+
def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
|
| 305 |
+
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size
|
| 306 |
+
trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob
|
| 307 |
+
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
|
| 308 |
+
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
|
| 309 |
+
trans = trans.scatter(-1, x_t[..., None], diag_fill)
|
| 310 |
+
return trans
|
| 311 |
+
|
| 312 |
+
def staggered_score(score, delta_sigma):
|
| 313 |
+
exp_factor = torch.exp(-delta_sigma)[..., None]
|
| 314 |
+
correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
|
| 315 |
+
return correction + score / exp_factor
|
| 316 |
+
|
| 317 |
+
def sample_categorical(probs: torch.Tensor) -> torch.Tensor:
|
| 318 |
+
eps = 1e-10
|
| 319 |
+
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
|
| 320 |
+
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# --- 5. Model Initialization and Loading ---
|
| 324 |
+
|
| 325 |
+
print("Initializing and loading the pretrained model...")
|
| 326 |
+
model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
|
| 327 |
+
bias=False, vocab_size=vocab_size, block_size=context_length, dropout=0.2)
|
| 328 |
+
config = GPTConfig(**model_args)
|
| 329 |
+
model = GPT(config)
|
| 330 |
+
|
| 331 |
+
model.load_state_dict(
|
| 332 |
+
torch.hub.load_state_dict_from_url(
|
| 333 |
+
'https://huggingface.co/spaces/thejagstudio/diffusion-gpt/resolve/main/final_model.pth?download=true',
|
| 334 |
+
# 'https://huggingface.co/spaces/thejagstudio/diffusion-gpt/resolve/main/model_epoch_1.pth?download=true',
|
| 335 |
+
map_location=device
|
| 336 |
+
)
|
| 337 |
+
)
|
| 338 |
+
model.to(device)
|
| 339 |
+
model.eval()
|
| 340 |
+
|
| 341 |
+
noise = GeometricNoise(sigma_min=1e-4, sigma_max=20)
|
| 342 |
+
print("Model loaded successfully.")
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
# --- 6. Gradio Interface Logic ---
|
| 346 |
+
@spaces.GPU
|
| 347 |
+
def generate_text(steps):
|
| 348 |
+
"""
|
| 349 |
+
Fast generation phase. Runs the diffusion process and stores all
|
| 350 |
+
intermediate frames in a list, then returns the final text and the list.
|
| 351 |
+
"""
|
| 352 |
+
steps = int(steps)
|
| 353 |
+
eps = 1e-5
|
| 354 |
+
|
| 355 |
+
# List to store each frame of the diffusion process
|
| 356 |
+
diffusion_frames = []
|
| 357 |
+
|
| 358 |
+
# Start with a random sample
|
| 359 |
+
x = torch.randint(0, vocab_size, (1, context_length), device=device)
|
| 360 |
+
initial_text = f"--- Initial Random Noise ---\n\n{wrap_text(decode(x[0]))}"
|
| 361 |
+
diffusion_frames.append(initial_text)
|
| 362 |
+
|
| 363 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=device)
|
| 364 |
+
step_size = (1 - eps) / steps
|
| 365 |
+
|
| 366 |
+
with torch.no_grad():
|
| 367 |
+
for i in range(steps):
|
| 368 |
+
t = timesteps[i] * torch.ones(x.shape[0], 1, device=device)
|
| 369 |
+
curr_sigma_bar = noise(t)[0]
|
| 370 |
+
|
| 371 |
+
next_sigma_bar = noise(t - step_size)[0]
|
| 372 |
+
delta_sigma = curr_sigma_bar - next_sigma_bar
|
| 373 |
+
|
| 374 |
+
log_score = model(x, curr_sigma_bar)
|
| 375 |
+
score = torch.exp(log_score)
|
| 376 |
+
|
| 377 |
+
stag_score = staggered_score(score, delta_sigma)
|
| 378 |
+
probs = stag_score * transition(x, delta_sigma)
|
| 379 |
+
x = sample_categorical(probs)
|
| 380 |
+
|
| 381 |
+
# Store the frame
|
| 382 |
+
progress_text = f"--- Denoising Step {i + 1}/{steps} ---\n\n{wrap_text(decode(x[0]))}"
|
| 383 |
+
diffusion_frames.append(progress_text)
|
| 384 |
+
|
| 385 |
+
# Final denoising step
|
| 386 |
+
t = timesteps[steps] * torch.ones(x.shape[0], 1, device=device)
|
| 387 |
+
curr_sigma_bar = noise(t)[0]
|
| 388 |
+
delta_sigma = curr_sigma_bar
|
| 389 |
+
|
| 390 |
+
log_score = model(x, curr_sigma_bar)
|
| 391 |
+
score = torch.exp(log_score)
|
| 392 |
+
stag_score = staggered_score(score, delta_sigma)
|
| 393 |
+
probs = stag_score * transition(x, delta_sigma)
|
| 394 |
+
x = sample_categorical(probs)
|
| 395 |
+
|
| 396 |
+
final_text = f"--- Final Denoised Text (Step {steps}) ---\n\n{wrap_text(decode(x[0]))}"
|
| 397 |
+
diffusion_frames.append(final_text)
|
| 398 |
+
|
| 399 |
+
# Return the final text and the complete list of frames
|
| 400 |
+
return final_text, diffusion_frames
|
| 401 |
+
|
| 402 |
+
def replay_diffusion(frames, replay_speed):
|
| 403 |
+
"""
|
| 404 |
+
Slow replay phase. Iterates through the stored frames and yields them
|
| 405 |
+
with a delay to create an animation effect.
|
| 406 |
+
"""
|
| 407 |
+
delay = 0.5 / replay_speed # Calculate delay based on speed multiplier
|
| 408 |
+
for frame in frames:
|
| 409 |
+
yield frame
|
| 410 |
+
time.sleep(delay)
|
| 411 |
+
|
| 412 |
+
# Define the Gradio UI
|
| 413 |
+
css = '''.gradio-container > .fillable {max-width: 720px !important}
|
| 414 |
+
h3{margin-top: 1em}
|
| 415 |
+
p{margin-top: 0}
|
| 416 |
+
textarea{font-family: monospace;background-color: black}
|
| 417 |
+
'''
|
| 418 |
+
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
|
| 419 |
+
gr.Markdown(
|
| 420 |
+
"""
|
| 421 |
+
# LLADA inspired diffusion language model
|
| 422 |
+
### A Tiny 11M parameters character based diffusion model
|
| 423 |
+
"""
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
generate_button = gr.Button("Generate", variant="primary")
|
| 427 |
+
|
| 428 |
+
output_textbox = gr.Textbox(
|
| 429 |
+
label="Generated Text",
|
| 430 |
+
lines=15,
|
| 431 |
+
interactive=False,
|
| 432 |
+
show_copy_button=True,
|
| 433 |
+
placeholder="Generation will appear here..."
|
| 434 |
+
)
|
| 435 |
+
with gr.Row():
|
| 436 |
+
steps_slider = gr.Slider(
|
| 437 |
+
minimum=64,
|
| 438 |
+
maximum=512,
|
| 439 |
+
value=128,
|
| 440 |
+
step=1,
|
| 441 |
+
label="Denoising Steps",
|
| 442 |
+
info="Number of steps in the generation process."
|
| 443 |
+
)
|
| 444 |
+
speed_slider = gr.Slider(
|
| 445 |
+
minimum=1,
|
| 446 |
+
maximum=20,
|
| 447 |
+
value=10,
|
| 448 |
+
step=1,
|
| 449 |
+
label="Replay Speed",
|
| 450 |
+
info="Controls the speed of the animation after generation.",
|
| 451 |
+
visible=False
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
diffusion_frames_state = gr.State([])
|
| 455 |
+
|
| 456 |
+
generate_event = generate_button.click(
|
| 457 |
+
fn=generate_text,
|
| 458 |
+
inputs=[steps_slider],
|
| 459 |
+
outputs=[output_textbox, diffusion_frames_state]
|
| 460 |
+
).then(
|
| 461 |
+
fn=replay_diffusion,
|
| 462 |
+
inputs=[diffusion_frames_state, speed_slider],
|
| 463 |
+
outputs=[output_textbox]
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
if __name__ == "__main__":
|
| 467 |
+
demo.launch()
|
app.py
ADDED
|
@@ -0,0 +1,798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
import numpy as np
|
| 7 |
+
import math
|
| 8 |
+
import os
|
| 9 |
+
import pickle
|
| 10 |
+
import requests
|
| 11 |
+
import textwrap
|
| 12 |
+
import subprocess
|
| 13 |
+
import shutil
|
| 14 |
+
import time
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Optional
|
| 17 |
+
from transformers import AutoTokenizer
|
| 18 |
+
|
| 19 |
+
# ==============================================================================
|
| 20 |
+
# ------------------------- VERSION 1: SHARED SETUP ----------------------------
|
| 21 |
+
# ==============================================================================
|
| 22 |
+
|
| 23 |
+
def setup_environment():
|
| 24 |
+
"""Checks for and sets up the necessary data for V1."""
|
| 25 |
+
nano_gpt_repo_path = 'nanoGPT'
|
| 26 |
+
data_dir_path = 'shakespeare_char'
|
| 27 |
+
meta_path = os.path.join(data_dir_path, 'meta.pkl')
|
| 28 |
+
|
| 29 |
+
if os.path.exists(meta_path):
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
print("Required data not found. Starting one-time setup...")
|
| 33 |
+
if not os.path.exists(nano_gpt_repo_path):
|
| 34 |
+
try:
|
| 35 |
+
subprocess.run(['git', 'clone', 'https://github.com/karpathy/nanoGPT.git'], check=True, capture_output=True, text=True)
|
| 36 |
+
except subprocess.CalledProcessError as e:
|
| 37 |
+
print(f"Error cloning repository: {e.stderr}")
|
| 38 |
+
pass
|
| 39 |
+
|
| 40 |
+
source_data_dir = os.path.join(nano_gpt_repo_path, 'data', 'shakespeare_char')
|
| 41 |
+
if not os.path.exists(data_dir_path) and os.path.exists(source_data_dir):
|
| 42 |
+
shutil.copytree(source_data_dir, data_dir_path)
|
| 43 |
+
|
| 44 |
+
# Check if we can run prepare
|
| 45 |
+
prepare_script_path = os.path.join(data_dir_path, 'prepare.py')
|
| 46 |
+
if os.path.exists(prepare_script_path) and not os.path.exists(meta_path):
|
| 47 |
+
subprocess.run(['python', 'prepare.py'], check=True, cwd=data_dir_path, capture_output=True, text=True)
|
| 48 |
+
|
| 49 |
+
setup_environment()
|
| 50 |
+
|
| 51 |
+
def download_file(url, filename):
|
| 52 |
+
if os.path.exists(filename):
|
| 53 |
+
return
|
| 54 |
+
print(f"Downloading '{filename}'...")
|
| 55 |
+
try:
|
| 56 |
+
response = requests.get(url, stream=True)
|
| 57 |
+
response.raise_for_status()
|
| 58 |
+
with open(filename, 'wb') as f:
|
| 59 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 60 |
+
f.write(chunk)
|
| 61 |
+
except requests.exceptions.RequestException as e:
|
| 62 |
+
print(f"Error downloading {url}: {e}")
|
| 63 |
+
|
| 64 |
+
# ==============================================================================
|
| 65 |
+
# ---------------------- VERSION 1: ARCHITECTURE & LOGIC -----------------------
|
| 66 |
+
# ==============================================================================
|
| 67 |
+
|
| 68 |
+
# V1 Constants and Meta Loading
|
| 69 |
+
v1_data_dir = './shakespeare_char/'
|
| 70 |
+
v1_meta_url = 'https://huggingface.co/spaces/thejagstudio/diffusion-gpt/resolve/main/meta.pkl'
|
| 71 |
+
v1_meta_path = 'meta.pkl'
|
| 72 |
+
download_file(v1_meta_url, v1_meta_path)
|
| 73 |
+
|
| 74 |
+
v1_vocab_size = 65 # Fallback
|
| 75 |
+
v1_itos = {}
|
| 76 |
+
v1_stoi = {}
|
| 77 |
+
|
| 78 |
+
if os.path.exists(v1_meta_path):
|
| 79 |
+
with open(v1_meta_path, 'rb') as f:
|
| 80 |
+
meta = pickle.load(f)
|
| 81 |
+
v1_vocab_size = meta['vocab_size']
|
| 82 |
+
v1_itos = meta['itos']
|
| 83 |
+
v1_stoi = meta['stoi']
|
| 84 |
+
|
| 85 |
+
v1_context_length = 256
|
| 86 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 87 |
+
|
| 88 |
+
def v1_decode(indices_tensor: torch.Tensor):
|
| 89 |
+
if indices_tensor.dim() > 1:
|
| 90 |
+
indices_tensor = indices_tensor.squeeze(0)
|
| 91 |
+
indices = indices_tensor.cpu().numpy()
|
| 92 |
+
return ''.join([v1_itos.get(i, '?') for i in indices])
|
| 93 |
+
|
| 94 |
+
def wrap_text(long_text, width=80):
|
| 95 |
+
paragraphs = long_text.splitlines()
|
| 96 |
+
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
|
| 97 |
+
return "\n".join(wrapped)
|
| 98 |
+
|
| 99 |
+
@dataclass
|
| 100 |
+
class V1_GPTConfig:
|
| 101 |
+
block_size: int = 1024
|
| 102 |
+
vocab_size: int = 50304
|
| 103 |
+
n_layer: int = 12
|
| 104 |
+
n_head: int = 12
|
| 105 |
+
n_embd: int = 768
|
| 106 |
+
cond_dim: int = 64
|
| 107 |
+
dropout: float = 0.0
|
| 108 |
+
bias: bool = False
|
| 109 |
+
|
| 110 |
+
class V1_MLP(nn.Module):
|
| 111 |
+
def __init__(self, config):
|
| 112 |
+
super().__init__()
|
| 113 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 114 |
+
self.gelu = nn.GELU()
|
| 115 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 116 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 117 |
+
def forward(self, x):
|
| 118 |
+
x = self.c_fc(x)
|
| 119 |
+
x = self.gelu(x)
|
| 120 |
+
x = self.c_proj(x)
|
| 121 |
+
x = self.dropout(x)
|
| 122 |
+
return x
|
| 123 |
+
|
| 124 |
+
class V1_SelfAttention(nn.Module):
|
| 125 |
+
def __init__(self, config):
|
| 126 |
+
super().__init__()
|
| 127 |
+
assert config.n_embd % config.n_head == 0
|
| 128 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 129 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 130 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 131 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 132 |
+
self.n_head = config.n_head
|
| 133 |
+
self.n_embd = config.n_embd
|
| 134 |
+
self.dropout = config.dropout
|
| 135 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
| 136 |
+
def forward(self, x):
|
| 137 |
+
B, T, C = x.size()
|
| 138 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 139 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 140 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 141 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 142 |
+
if self.flash:
|
| 143 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
|
| 144 |
+
else:
|
| 145 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 146 |
+
att = F.softmax(att, dim=-1)
|
| 147 |
+
att = self.attn_dropout(att)
|
| 148 |
+
y = att @ v
|
| 149 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 150 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 151 |
+
return y
|
| 152 |
+
|
| 153 |
+
def v1_modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
|
| 154 |
+
return x * (1 + scale) + shift
|
| 155 |
+
|
| 156 |
+
def v1_bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
|
| 157 |
+
if bias is not None:
|
| 158 |
+
out = scale * (x + bias)
|
| 159 |
+
else:
|
| 160 |
+
out = scale * x
|
| 161 |
+
if residual is not None:
|
| 162 |
+
out = residual + out
|
| 163 |
+
return out
|
| 164 |
+
|
| 165 |
+
class V1_DDiTBlock(nn.Module):
|
| 166 |
+
def __init__(self, config):
|
| 167 |
+
super().__init__()
|
| 168 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 169 |
+
self.attn = V1_SelfAttention(config)
|
| 170 |
+
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 171 |
+
self.mlp = V1_MLP(config)
|
| 172 |
+
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd)
|
| 173 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 174 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 175 |
+
def forward(self, x, c):
|
| 176 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
|
| 177 |
+
x_skip = x
|
| 178 |
+
x = v1_modulate(self.ln_1(x), shift_msa, scale_msa)
|
| 179 |
+
x = self.attn(x)
|
| 180 |
+
x = v1_bias_add_scale(self.attn(self.ln_1(x)), None, gate_msa, x_skip)
|
| 181 |
+
x = v1_bias_add_scale(self.mlp(v1_modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
|
| 182 |
+
return x
|
| 183 |
+
|
| 184 |
+
class V1_DDitFinalLayer(nn.Module):
|
| 185 |
+
def __init__(self, config):
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 188 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
| 189 |
+
self.linear.weight.data.zero_()
|
| 190 |
+
self.linear.bias.data.zero_()
|
| 191 |
+
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
|
| 192 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 193 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 194 |
+
def forward(self, x, c):
|
| 195 |
+
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
|
| 196 |
+
x = v1_modulate(self.norm_final(x), shift, scale)
|
| 197 |
+
x = self.linear(x)
|
| 198 |
+
return x
|
| 199 |
+
|
| 200 |
+
class V1_TimestepEmbedder(nn.Module):
|
| 201 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 202 |
+
super().__init__()
|
| 203 |
+
self.mlp = nn.Sequential(
|
| 204 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 205 |
+
nn.SiLU(),
|
| 206 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 207 |
+
)
|
| 208 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 209 |
+
@staticmethod
|
| 210 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 211 |
+
half = dim // 2
|
| 212 |
+
freqs = torch.exp(
|
| 213 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 214 |
+
).to(device=t.device)
|
| 215 |
+
args = t[:, None].float() * freqs[None]
|
| 216 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 217 |
+
if dim % 2:
|
| 218 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 219 |
+
return embedding
|
| 220 |
+
def forward(self, t):
|
| 221 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 222 |
+
t_emb = self.mlp(t_freq)
|
| 223 |
+
return t_emb
|
| 224 |
+
|
| 225 |
+
class V1_GPT(nn.Module):
|
| 226 |
+
def __init__(self, config):
|
| 227 |
+
super().__init__()
|
| 228 |
+
assert config.vocab_size is not None
|
| 229 |
+
assert config.block_size is not None
|
| 230 |
+
self.config = config
|
| 231 |
+
self.sigma_map = V1_TimestepEmbedder(config.cond_dim)
|
| 232 |
+
self.transformer = nn.ModuleDict(dict(
|
| 233 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
| 234 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
| 235 |
+
drop = nn.Dropout(config.dropout),
|
| 236 |
+
h = nn.ModuleList([V1_DDiTBlock(config) for _ in range(config.n_layer)]),
|
| 237 |
+
ln_f = nn.LayerNorm(config.n_embd, bias=config.bias),
|
| 238 |
+
))
|
| 239 |
+
self.lm_head = V1_DDitFinalLayer(config)
|
| 240 |
+
self.apply(self._init_weights)
|
| 241 |
+
for pn, p in self.named_parameters():
|
| 242 |
+
if pn.endswith('c_proj.weight'):
|
| 243 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
| 244 |
+
def _init_weights(self, module):
|
| 245 |
+
if isinstance(module, nn.Linear):
|
| 246 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 247 |
+
if module.bias is not None:
|
| 248 |
+
torch.nn.init.zeros_(module.bias)
|
| 249 |
+
elif isinstance(module, nn.Embedding):
|
| 250 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 251 |
+
def forward(self, idx, sigma):
|
| 252 |
+
sigma = sigma.reshape(-1)
|
| 253 |
+
b, t = idx.size()
|
| 254 |
+
c = F.silu(self.sigma_map(sigma))
|
| 255 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
| 256 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
| 257 |
+
tok_emb = self.transformer.wte(idx)
|
| 258 |
+
pos_emb = self.transformer.wpe(pos)
|
| 259 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 260 |
+
for block in self.transformer.h:
|
| 261 |
+
x = block(x, c)
|
| 262 |
+
x = self.transformer.ln_f(x)
|
| 263 |
+
x = self.lm_head(x, c)
|
| 264 |
+
x = torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
|
| 265 |
+
return x
|
| 266 |
+
|
| 267 |
+
class V1_GeometricNoise:
|
| 268 |
+
def __init__(self, sigma_min=1e-4, sigma_max=20):
|
| 269 |
+
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max]).to(device)
|
| 270 |
+
def rate_noise(self, t):
|
| 271 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
|
| 272 |
+
def total_noise(self, t):
|
| 273 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
|
| 274 |
+
def __call__(self, t):
|
| 275 |
+
return self.total_noise(t), self.rate_noise(t)
|
| 276 |
+
|
| 277 |
+
# --- V1 Inference Logic ---
|
| 278 |
+
def v1_transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
|
| 279 |
+
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / v1_vocab_size
|
| 280 |
+
trans = torch.ones(*x_t.shape, v1_vocab_size, device=x_t.device) * base_prob
|
| 281 |
+
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
|
| 282 |
+
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
|
| 283 |
+
trans = trans.scatter(-1, x_t[..., None], diag_fill)
|
| 284 |
+
return trans
|
| 285 |
+
|
| 286 |
+
def v1_staggered_score(score, delta_sigma):
|
| 287 |
+
exp_factor = torch.exp(-delta_sigma)[..., None]
|
| 288 |
+
correction = ((exp_factor - 1) / (v1_vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
|
| 289 |
+
return correction + score / exp_factor
|
| 290 |
+
|
| 291 |
+
def v1_sample_categorical(probs: torch.Tensor) -> torch.Tensor:
|
| 292 |
+
eps = 1e-10
|
| 293 |
+
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
|
| 294 |
+
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
|
| 295 |
+
|
| 296 |
+
# --- V1 Model Loading ---
|
| 297 |
+
print("Initializing V1 Model...")
|
| 298 |
+
v1_model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
|
| 299 |
+
bias=False, vocab_size=v1_vocab_size, block_size=v1_context_length, dropout=0.2)
|
| 300 |
+
v1_config = V1_GPTConfig(**v1_model_args)
|
| 301 |
+
v1_model = V1_GPT(v1_config)
|
| 302 |
+
try:
|
| 303 |
+
v1_model.load_state_dict(
|
| 304 |
+
torch.hub.load_state_dict_from_url(
|
| 305 |
+
'https://huggingface.co/spaces/thejagstudio/diffusion-gpt/resolve/main/final_model.pth?download=true',
|
| 306 |
+
map_location=device
|
| 307 |
+
)
|
| 308 |
+
)
|
| 309 |
+
v1_model.to(device)
|
| 310 |
+
v1_model.eval()
|
| 311 |
+
print("V1 Model loaded successfully.")
|
| 312 |
+
except Exception as e:
|
| 313 |
+
print(f"Failed to load V1 model: {e}")
|
| 314 |
+
v1_model = None
|
| 315 |
+
|
| 316 |
+
v1_noise = V1_GeometricNoise(sigma_min=1e-4, sigma_max=20)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def v1_generate_stream(steps, speed):
|
| 320 |
+
"""
|
| 321 |
+
Generator function for V1 that yields frames directly.
|
| 322 |
+
Combined logic of generation and replay to allow for immediate stopping.
|
| 323 |
+
"""
|
| 324 |
+
if v1_model is None:
|
| 325 |
+
yield "Error: V1 Model not loaded"
|
| 326 |
+
return
|
| 327 |
+
|
| 328 |
+
steps = int(steps)
|
| 329 |
+
speed = float(speed)
|
| 330 |
+
eps = 1e-5
|
| 331 |
+
|
| 332 |
+
# Calculate delay based on speed slider (similar to V2)
|
| 333 |
+
# 0.5 is base constant, speed scales it down
|
| 334 |
+
delay = 0.5 / max(speed, 0.1)
|
| 335 |
+
|
| 336 |
+
x = torch.randint(0, v1_vocab_size, (1, v1_context_length), device=device)
|
| 337 |
+
initial_text = f"--- Initial Random Noise ---\n\n{wrap_text(v1_decode(x[0]))}"
|
| 338 |
+
yield initial_text
|
| 339 |
+
time.sleep(delay)
|
| 340 |
+
|
| 341 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=device)
|
| 342 |
+
step_size = (1 - eps) / steps
|
| 343 |
+
|
| 344 |
+
with torch.no_grad():
|
| 345 |
+
for i in range(steps):
|
| 346 |
+
t = timesteps[i] * torch.ones(x.shape[0], 1, device=device)
|
| 347 |
+
curr_sigma_bar = v1_noise(t)[0]
|
| 348 |
+
|
| 349 |
+
next_sigma_bar = v1_noise(t - step_size)[0]
|
| 350 |
+
delta_sigma = curr_sigma_bar - next_sigma_bar
|
| 351 |
+
|
| 352 |
+
log_score = v1_model(x, curr_sigma_bar)
|
| 353 |
+
score = torch.exp(log_score)
|
| 354 |
+
|
| 355 |
+
stag_score = v1_staggered_score(score, delta_sigma)
|
| 356 |
+
probs = stag_score * v1_transition(x, delta_sigma)
|
| 357 |
+
x = v1_sample_categorical(probs)
|
| 358 |
+
|
| 359 |
+
progress_text = f"--- Denoising Step {i + 1}/{steps} ---\n\n{wrap_text(v1_decode(x[0]))}"
|
| 360 |
+
yield progress_text
|
| 361 |
+
|
| 362 |
+
# Artificial delay for visualization
|
| 363 |
+
if speed < 20:
|
| 364 |
+
time.sleep(delay)
|
| 365 |
+
|
| 366 |
+
t = timesteps[steps] * torch.ones(x.shape[0], 1, device=device)
|
| 367 |
+
curr_sigma_bar = v1_noise(t)[0]
|
| 368 |
+
delta_sigma = curr_sigma_bar
|
| 369 |
+
|
| 370 |
+
log_score = v1_model(x, curr_sigma_bar)
|
| 371 |
+
score = torch.exp(log_score)
|
| 372 |
+
stag_score = v1_staggered_score(score, delta_sigma)
|
| 373 |
+
probs = stag_score * v1_transition(x, delta_sigma)
|
| 374 |
+
x = v1_sample_categorical(probs)
|
| 375 |
+
|
| 376 |
+
final_text = f"--- Final Denoised Text (Step {steps}) ---\n\n{wrap_text(v1_decode(x[0]))}"
|
| 377 |
+
yield final_text
|
| 378 |
+
|
| 379 |
+
# ==============================================================================
|
| 380 |
+
# ---------------------- VERSION 2: ARCHITECTURE & LOGIC -----------------------
|
| 381 |
+
# ==============================================================================
|
| 382 |
+
|
| 383 |
+
# PLEASE UPDATE THIS PATH TO YOUR ACTUAL LOCAL FILE OR URL
|
| 384 |
+
V2_MODEL_PATH = "checkpoints/model_fp32.pt"
|
| 385 |
+
|
| 386 |
+
class V2_RMSNorm(nn.Module):
|
| 387 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 388 |
+
super().__init__()
|
| 389 |
+
self.eps = eps
|
| 390 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 391 |
+
|
| 392 |
+
def forward(self, x):
|
| 393 |
+
var = x.pow(2).mean(-1, keepdim=True)
|
| 394 |
+
x = x * torch.rsqrt(var + self.eps)
|
| 395 |
+
return self.weight * x
|
| 396 |
+
|
| 397 |
+
class V2_RotaryEmbedding(nn.Module):
|
| 398 |
+
def __init__(self, dim, max_position_embeddings=16384, base=100000, scaling_factor=1.0):
|
| 399 |
+
super().__init__()
|
| 400 |
+
self.scaling_factor = scaling_factor
|
| 401 |
+
self.dim = dim
|
| 402 |
+
self.base = base
|
| 403 |
+
self.max_position_embeddings = max_position_embeddings
|
| 404 |
+
self.inv_freq = None
|
| 405 |
+
self._cache = {}
|
| 406 |
+
|
| 407 |
+
def _update_freqs(self, device):
|
| 408 |
+
base = self.base * (self.scaling_factor ** (self.dim / (self.dim - 2)))
|
| 409 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 410 |
+
self.inv_freq = inv_freq
|
| 411 |
+
|
| 412 |
+
def forward(self, x, seq_len=None):
|
| 413 |
+
if seq_len is None:
|
| 414 |
+
seq_len = x.shape[-2]
|
| 415 |
+
|
| 416 |
+
if self.inv_freq is None or self.inv_freq.device != x.device:
|
| 417 |
+
self._update_freqs(x.device)
|
| 418 |
+
|
| 419 |
+
cache_key = (seq_len, x.device, x.dtype)
|
| 420 |
+
if cache_key in self._cache:
|
| 421 |
+
return self._cache[cache_key]
|
| 422 |
+
|
| 423 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
| 424 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 425 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 426 |
+
|
| 427 |
+
cos = emb.cos()[None, None, :, :]
|
| 428 |
+
sin = emb.sin()[None, None, :, :]
|
| 429 |
+
|
| 430 |
+
self._cache[cache_key] = (cos, sin)
|
| 431 |
+
if len(self._cache) > 10:
|
| 432 |
+
self._cache.pop(next(iter(self._cache)))
|
| 433 |
+
|
| 434 |
+
return cos, sin
|
| 435 |
+
|
| 436 |
+
def v2_apply_rotary_pos_emb(q, k, cos, sin):
|
| 437 |
+
def rotate_half(x):
|
| 438 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 439 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 440 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 441 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 442 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 443 |
+
return q_embed, k_embed
|
| 444 |
+
|
| 445 |
+
class V2_DiffusionAttention(nn.Module):
|
| 446 |
+
def __init__(self, config):
|
| 447 |
+
super().__init__()
|
| 448 |
+
self.hidden_size = config.hidden_size
|
| 449 |
+
self.num_heads = config.num_attention_heads
|
| 450 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 451 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 452 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 453 |
+
self.use_flash_attn = config.use_flash_attn
|
| 454 |
+
|
| 455 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 456 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 457 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 458 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 459 |
+
|
| 460 |
+
def forward(self, hidden_states, freqs_cis, attention_mask=None, past_kv=None):
|
| 461 |
+
bsz, q_len, _ = hidden_states.size()
|
| 462 |
+
|
| 463 |
+
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 464 |
+
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 465 |
+
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 466 |
+
|
| 467 |
+
cos, sin = freqs_cis
|
| 468 |
+
cos = cos[:, :, :q_len, :]
|
| 469 |
+
sin = sin[:, :, :q_len, :]
|
| 470 |
+
q, k = v2_apply_rotary_pos_emb(q, k, cos, sin)
|
| 471 |
+
|
| 472 |
+
if past_kv is not None:
|
| 473 |
+
cache_k, cache_v = past_kv
|
| 474 |
+
k = torch.cat([cache_k, k], dim=2)
|
| 475 |
+
v = torch.cat([cache_v, v], dim=2)
|
| 476 |
+
|
| 477 |
+
current_kv = (k, v)
|
| 478 |
+
k = k.repeat_interleave(self.num_key_value_groups, dim=1)
|
| 479 |
+
v = v.repeat_interleave(self.num_key_value_groups, dim=1)
|
| 480 |
+
|
| 481 |
+
attn_mask = None
|
| 482 |
+
if attention_mask is not None:
|
| 483 |
+
attn_mask = attention_mask[:, None, None, :].to(dtype=q.dtype)
|
| 484 |
+
attn_mask = (1.0 - attn_mask) * torch.finfo(q.dtype).min
|
| 485 |
+
|
| 486 |
+
output = F.scaled_dot_product_attention(
|
| 487 |
+
q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=False
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
output = output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
|
| 491 |
+
return self.o_proj(output), current_kv
|
| 492 |
+
|
| 493 |
+
class V2_MLP(nn.Module):
|
| 494 |
+
def __init__(self, config):
|
| 495 |
+
super().__init__()
|
| 496 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 497 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 498 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 499 |
+
self.act_fn = nn.SiLU()
|
| 500 |
+
|
| 501 |
+
def forward(self, x):
|
| 502 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 503 |
+
|
| 504 |
+
class V2_BlockDiffusionBlock(nn.Module):
|
| 505 |
+
def __init__(self, config):
|
| 506 |
+
super().__init__()
|
| 507 |
+
self.self_attn = V2_DiffusionAttention(config)
|
| 508 |
+
self.mlp = V2_MLP(config)
|
| 509 |
+
self.input_layernorm = V2_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 510 |
+
self.post_attention_layernorm = V2_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 511 |
+
self.use_activation_checkpointing = config.use_activation_checkpointing
|
| 512 |
+
|
| 513 |
+
def forward(self, hidden_states, freqs_cis, attention_mask, past_kv):
|
| 514 |
+
return self._forward(hidden_states, freqs_cis, attention_mask, past_kv)
|
| 515 |
+
|
| 516 |
+
def _forward(self, hidden_states, freqs_cis, attention_mask, past_kv):
|
| 517 |
+
residual = hidden_states
|
| 518 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 519 |
+
attn_out, new_kv = self.self_attn(hidden_states, freqs_cis, attention_mask, past_kv)
|
| 520 |
+
hidden_states = residual + attn_out
|
| 521 |
+
|
| 522 |
+
residual = hidden_states
|
| 523 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 524 |
+
hidden_states = residual + self.mlp(hidden_states)
|
| 525 |
+
return hidden_states, new_kv
|
| 526 |
+
|
| 527 |
+
@dataclass
|
| 528 |
+
class V2_ModelConfig:
|
| 529 |
+
vocab_size: int = 151936
|
| 530 |
+
hidden_size: int = 1024
|
| 531 |
+
intermediate_size: int = 2816
|
| 532 |
+
num_hidden_layers: int = 16
|
| 533 |
+
num_attention_heads: int = 16
|
| 534 |
+
num_key_value_heads: int = 4
|
| 535 |
+
max_position_embeddings: int = 16384
|
| 536 |
+
rms_norm_eps: float = 1e-6
|
| 537 |
+
rope_theta: float = 100000.0
|
| 538 |
+
pad_token_id: int = 0
|
| 539 |
+
mask_token_id: int = 1
|
| 540 |
+
use_flash_attn: bool = True
|
| 541 |
+
use_activation_checkpointing: bool = False
|
| 542 |
+
attention_dropout: float = 0.0
|
| 543 |
+
hidden_dropout: float = 0.0
|
| 544 |
+
|
| 545 |
+
ModelConfig = V2_ModelConfig
|
| 546 |
+
|
| 547 |
+
class V2_DiffusionLLM(nn.Module):
|
| 548 |
+
def __init__(self, config: V2_ModelConfig):
|
| 549 |
+
super().__init__()
|
| 550 |
+
self.config = config
|
| 551 |
+
pad_idx = config.pad_token_id if config.pad_token_id < config.vocab_size else None
|
| 552 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=pad_idx)
|
| 553 |
+
|
| 554 |
+
self.layers = nn.ModuleList([V2_BlockDiffusionBlock(config) for _ in range(config.num_hidden_layers)])
|
| 555 |
+
self.norm = V2_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 556 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 557 |
+
self.rotary_emb = V2_RotaryEmbedding(
|
| 558 |
+
config.hidden_size // config.num_attention_heads,
|
| 559 |
+
config.max_position_embeddings
|
| 560 |
+
)
|
| 561 |
+
self.lm_head.weight = self.embed_tokens.weight
|
| 562 |
+
|
| 563 |
+
def forward(self, input_ids, attention_mask=None, past_key_values=None):
|
| 564 |
+
bsz, seqlen = input_ids.shape
|
| 565 |
+
hidden_states = self.embed_tokens(input_ids)
|
| 566 |
+
freqs_cis = self.rotary_emb(hidden_states, seq_len=seqlen)
|
| 567 |
+
|
| 568 |
+
if past_key_values is None:
|
| 569 |
+
past_key_values = [None] * len(self.layers)
|
| 570 |
+
|
| 571 |
+
new_kvs = []
|
| 572 |
+
for i, layer in enumerate(self.layers):
|
| 573 |
+
hidden_states, kv = layer(hidden_states, freqs_cis, attention_mask, past_key_values[i])
|
| 574 |
+
new_kvs.append(kv)
|
| 575 |
+
|
| 576 |
+
hidden_states = self.norm(hidden_states)
|
| 577 |
+
logits = self.lm_head(hidden_states)
|
| 578 |
+
return logits, new_kvs
|
| 579 |
+
|
| 580 |
+
DiffusionLLM = V2_DiffusionLLM
|
| 581 |
+
|
| 582 |
+
# --- V2 Loading Logic ---
|
| 583 |
+
print("Initializing V2 components...")
|
| 584 |
+
v2_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B")
|
| 585 |
+
if v2_tokenizer.pad_token is None:
|
| 586 |
+
v2_tokenizer.pad_token = v2_tokenizer.eos_token
|
| 587 |
+
|
| 588 |
+
v2_model = None
|
| 589 |
+
v2_config = None
|
| 590 |
+
|
| 591 |
+
if os.path.exists(V2_MODEL_PATH):
|
| 592 |
+
print(f"Loading V2 model from {V2_MODEL_PATH}...")
|
| 593 |
+
try:
|
| 594 |
+
checkpoint = torch.load(V2_MODEL_PATH, map_location=device, weights_only=False)
|
| 595 |
+
v2_config = checkpoint['config']
|
| 596 |
+
v2_model = V2_DiffusionLLM(v2_config)
|
| 597 |
+
state_dict = checkpoint['model_state']
|
| 598 |
+
state_dict = {k: v.float() for k, v in state_dict.items()}
|
| 599 |
+
v2_model.load_state_dict(state_dict)
|
| 600 |
+
v2_model = v2_model.to(device)
|
| 601 |
+
v2_model.eval()
|
| 602 |
+
print("V2 Model loaded.")
|
| 603 |
+
except Exception as e:
|
| 604 |
+
print(f"Error loading V2 model: {e}")
|
| 605 |
+
else:
|
| 606 |
+
print(f"V2 Model file not found at {V2_MODEL_PATH}. Version 2 tab will not work without it.")
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
@torch.no_grad()
|
| 610 |
+
def v2_generate_block_diffusion(prompt, steps, block_size, max_new_tokens, replay_speed):
|
| 611 |
+
"""
|
| 612 |
+
Refactored to yield frames for real-time streaming.
|
| 613 |
+
"""
|
| 614 |
+
if v2_model is None:
|
| 615 |
+
yield "Error: V2 Model not found. Check path."
|
| 616 |
+
return
|
| 617 |
+
|
| 618 |
+
v2_model.eval()
|
| 619 |
+
# Handle inputs
|
| 620 |
+
steps = int(steps)
|
| 621 |
+
block_size = int(block_size)
|
| 622 |
+
max_new_tokens = int(max_new_tokens)
|
| 623 |
+
speed = float(replay_speed)
|
| 624 |
+
|
| 625 |
+
prompt_ids = v2_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 626 |
+
config = v2_model.config
|
| 627 |
+
num_blocks = max_new_tokens // block_size
|
| 628 |
+
|
| 629 |
+
context_ids = prompt_ids
|
| 630 |
+
|
| 631 |
+
# Helper params
|
| 632 |
+
temperature = 1.0
|
| 633 |
+
top_k = 40
|
| 634 |
+
top_p = 0.9
|
| 635 |
+
repetition_penalty = 1.2
|
| 636 |
+
|
| 637 |
+
# Calculate delay based on speed slider
|
| 638 |
+
delay = 0.5 / max(speed, 0.1)
|
| 639 |
+
|
| 640 |
+
for block_idx in range(num_blocks):
|
| 641 |
+
mask_block = torch.full((1, block_size), config.mask_token_id, device=device)
|
| 642 |
+
is_masked = torch.ones(1, block_size, dtype=torch.bool, device=device)
|
| 643 |
+
|
| 644 |
+
for step_idx in range(steps):
|
| 645 |
+
# --- SNAPSHOT & YIELD ---
|
| 646 |
+
# Decode context
|
| 647 |
+
ctx_str = v2_tokenizer.decode(context_ids[0], skip_special_tokens=True)
|
| 648 |
+
|
| 649 |
+
# Decode block with masking visual
|
| 650 |
+
block_tokens = mask_block[0].tolist()
|
| 651 |
+
block_vis = []
|
| 652 |
+
for i, tid in enumerate(block_tokens):
|
| 653 |
+
if is_masked[0, i]:
|
| 654 |
+
block_vis.append("β") # Mask symbol
|
| 655 |
+
else:
|
| 656 |
+
block_vis.append(v2_tokenizer.decode([tid], skip_special_tokens=False))
|
| 657 |
+
|
| 658 |
+
block_str = "".join(block_vis)
|
| 659 |
+
|
| 660 |
+
frame_text = (f"--- Generating Block {block_idx+1}/{num_blocks} | Step {step_idx+1}/{steps} ---\n\n"
|
| 661 |
+
f"{ctx_str}{block_str}")
|
| 662 |
+
|
| 663 |
+
yield frame_text
|
| 664 |
+
|
| 665 |
+
# Artificial delay to visualize the step
|
| 666 |
+
if speed < 20: # If max speed, skip sleep
|
| 667 |
+
time.sleep(delay)
|
| 668 |
+
# ------------------------
|
| 669 |
+
|
| 670 |
+
full_input = torch.cat([context_ids, mask_block], dim=1)
|
| 671 |
+
attention_mask = torch.ones_like(full_input, dtype=torch.float32)
|
| 672 |
+
|
| 673 |
+
logits, _ = v2_model(full_input, attention_mask=attention_mask)
|
| 674 |
+
block_logits = logits[:, -block_size:, :]
|
| 675 |
+
|
| 676 |
+
# Repetition penalty
|
| 677 |
+
if repetition_penalty != 1.0:
|
| 678 |
+
seen_tokens = set(context_ids[0].tolist())
|
| 679 |
+
for i in range(block_size):
|
| 680 |
+
if not is_masked[0, i]:
|
| 681 |
+
seen_tokens.add(mask_block[0, i].item())
|
| 682 |
+
for token_id in seen_tokens:
|
| 683 |
+
if token_id < block_logits.shape[-1]:
|
| 684 |
+
if block_logits[0, :, token_id].mean() > 0:
|
| 685 |
+
block_logits[:, :, token_id] /= repetition_penalty
|
| 686 |
+
else:
|
| 687 |
+
block_logits[:, :, token_id] *= repetition_penalty
|
| 688 |
+
|
| 689 |
+
block_logits = block_logits / temperature
|
| 690 |
+
|
| 691 |
+
# Top-K
|
| 692 |
+
if top_k > 0:
|
| 693 |
+
top_k_logits, top_k_indices = torch.topk(block_logits, top_k, dim=-1)
|
| 694 |
+
block_logits = torch.full_like(block_logits, float('-inf'))
|
| 695 |
+
block_logits.scatter_(-1, top_k_indices, top_k_logits)
|
| 696 |
+
|
| 697 |
+
# Top-P
|
| 698 |
+
if top_p < 1.0:
|
| 699 |
+
sorted_logits, sorted_indices = torch.sort(block_logits, descending=True, dim=-1)
|
| 700 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 701 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 702 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 703 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 704 |
+
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
|
| 705 |
+
block_logits[indices_to_remove] = float('-inf')
|
| 706 |
+
|
| 707 |
+
probs = F.softmax(block_logits, dim=-1)
|
| 708 |
+
probs = torch.nan_to_num(probs, nan=0.0, posinf=0.0, neginf=0.0)
|
| 709 |
+
probs = probs.clamp(min=1e-10)
|
| 710 |
+
probs = probs / probs.sum(dim=-1, keepdim=True)
|
| 711 |
+
|
| 712 |
+
sampled_tokens = torch.multinomial(probs.view(-1, probs.size(-1)), num_samples=1)
|
| 713 |
+
sampled_tokens = sampled_tokens.view(1, block_size)
|
| 714 |
+
|
| 715 |
+
confidence = probs.gather(-1, sampled_tokens.unsqueeze(-1)).squeeze(-1)
|
| 716 |
+
|
| 717 |
+
tokens_to_unmask = max(1, block_size // steps)
|
| 718 |
+
if step_idx == steps - 1:
|
| 719 |
+
tokens_to_unmask = is_masked.sum().item()
|
| 720 |
+
|
| 721 |
+
if tokens_to_unmask > 0 and is_masked.sum() > 0:
|
| 722 |
+
masked_confidence = confidence.clone()
|
| 723 |
+
masked_confidence[~is_masked] = -1.0
|
| 724 |
+
num_to_unmask = min(tokens_to_unmask, is_masked.sum().item())
|
| 725 |
+
_, top_indices = torch.topk(masked_confidence.view(-1), num_to_unmask)
|
| 726 |
+
|
| 727 |
+
for idx in top_indices:
|
| 728 |
+
mask_block[0, idx] = sampled_tokens[0, idx]
|
| 729 |
+
is_masked[0, idx] = False
|
| 730 |
+
|
| 731 |
+
context_ids = torch.cat([context_ids, mask_block], dim=1)
|
| 732 |
+
|
| 733 |
+
generated_ids = context_ids[0].tolist()
|
| 734 |
+
final_text = v2_tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 735 |
+
yield final_text
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
# ==============================================================================
|
| 739 |
+
# ------------------------------- GRADIO UI ------------------------------------
|
| 740 |
+
# ==============================================================================
|
| 741 |
+
|
| 742 |
+
css = '''.gradio-container > .fillable {max-width: 900px !important}
|
| 743 |
+
h3{margin-top: 1em}
|
| 744 |
+
p{margin-top: 0}
|
| 745 |
+
textarea{font-family: monospace; background-color: #1a1b1e; color: #e0e0e0}
|
| 746 |
+
'''
|
| 747 |
+
|
| 748 |
+
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
|
| 749 |
+
gr.Markdown("# Diffusion Language Models Playground")
|
| 750 |
+
|
| 751 |
+
with gr.Tabs():
|
| 752 |
+
|
| 753 |
+
# --- TAB 1: VERSION 1 (CHAR DIFFUSION) ---
|
| 754 |
+
with gr.Tab("Version 1: Character Diffusion (NanoGPT)"):
|
| 755 |
+
gr.Markdown("### Tiny 11M parameter character-based continuous diffusion.")
|
| 756 |
+
with gr.Row():
|
| 757 |
+
with gr.Column(scale=1):
|
| 758 |
+
v1_steps = gr.Slider(64, 512, 128, step=1, label="Denoising Steps")
|
| 759 |
+
v1_speed = gr.Slider(1, 20, 10, step=1, label="Generation/Replay Speed")
|
| 760 |
+
with gr.Row():
|
| 761 |
+
v1_btn = gr.Button("Generate", variant="primary")
|
| 762 |
+
v1_stop = gr.Button("Stop", variant="stop")
|
| 763 |
+
with gr.Column(scale=2):
|
| 764 |
+
v1_out = gr.Textbox(label="Generated Text", lines=15, interactive=False)
|
| 765 |
+
|
| 766 |
+
# V1 Logic: Merged generation and replay for proper stopping
|
| 767 |
+
v1_event = v1_btn.click(v1_generate_stream, inputs=[v1_steps, v1_speed], outputs=[v1_out])
|
| 768 |
+
v1_stop.click(fn=None, inputs=None, outputs=None, cancels=[v1_event])
|
| 769 |
+
|
| 770 |
+
# --- TAB 2: VERSION 2 (BLOCK DIFFUSION) ---
|
| 771 |
+
with gr.Tab("Version 2: Block Diffusion (LLaDA-style)"):
|
| 772 |
+
gr.Markdown("### Block-based diffusion using Qwen tokenizer.")
|
| 773 |
+
if v2_model is None:
|
| 774 |
+
gr.Warning(f"V2 Model not loaded. Please check path: {V2_MODEL_PATH}")
|
| 775 |
+
|
| 776 |
+
with gr.Row():
|
| 777 |
+
with gr.Column(scale=1):
|
| 778 |
+
v2_prompt = gr.Textbox(label="Prompt", value="The king went to the")
|
| 779 |
+
v2_steps = gr.Slider(4, 64, 16, step=1, label="Steps per Block")
|
| 780 |
+
v2_block_size = gr.Slider(8, 126, 32, step=8, label="Block Size")
|
| 781 |
+
v2_max_tokens = gr.Slider(32, 1024, 128, step=32, label="Total New Tokens")
|
| 782 |
+
v2_speed = gr.Slider(1, 20, 1, step=1, label="Generation/Replay Speed")
|
| 783 |
+
with gr.Row():
|
| 784 |
+
v2_btn = gr.Button("Generate", variant="primary")
|
| 785 |
+
v2_stop = gr.Button("Stop", variant="stop")
|
| 786 |
+
with gr.Column(scale=2):
|
| 787 |
+
v2_out = gr.Textbox(label="Generated Text", lines=15, interactive=False)
|
| 788 |
+
|
| 789 |
+
# V2 Logic
|
| 790 |
+
v2_event = v2_btn.click(
|
| 791 |
+
v2_generate_block_diffusion,
|
| 792 |
+
inputs=[v2_prompt, v2_steps, v2_block_size, v2_max_tokens, v2_speed],
|
| 793 |
+
outputs=[v2_out]
|
| 794 |
+
)
|
| 795 |
+
v2_stop.click(fn=None, inputs=None, outputs=None, cancels=[v2_event])
|
| 796 |
+
|
| 797 |
+
if __name__ == "__main__":
|
| 798 |
+
demo.launch()
|
final_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86da61c7e77f7062e51ec2974a723d6f195581e385ed802373d178ade0c81483
|
| 3 |
+
size 47047458
|
meta.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f221fcf4332ffda72912fad6e4b64e7988d6c4cba7ffcee98edbbc23f9a8400d
|
| 3 |
+
size 913
|
model_epoch_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:413c52559c94e2e71d991e45147c8773e02d007b095443ff2ffaed5174e147a7
|
| 3 |
+
size 47038242
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
numpy
|
| 4 |
+
requests
|
| 5 |
+
transformers
|