Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import transformers | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| def classify_sentence(sent:str): | |
| toksentence = tokenizer(sent,truncation=True,return_tensors="pt") | |
| model.eval() | |
| with torch.no_grad(): | |
| toksentence.to(device) | |
| output = model(**toksentence) | |
| return F.softmax(output.logits,dim=1).argmax(dim=1) | |
| def classify_text(text:str): | |
| sentences = sent_tokenize(text) | |
| annotations = np.array(list(map(classify_sentence,sentences)),dtype=object) | |
| result = list(zip(sentences,[mapping[val] for val in annotations])) | |
| return (annotations,result) | |
| def classify_text_wrapper(text:str): | |
| preds,result = classify_text(text) | |
| n = len(preds) | |
| non_biased = np.where(preds==0)[0].shape[0] | |
| biased = np.where(preds==1)[0].shape[0] | |
| return (result,{'bias ratio':biased/n}) | |
| examples=[["[Newsoms's] obsession with masks has created an almost hostile environment in our neighborhoods and streets.\n“He won because the Election was Rigged,” Trump wrote, not referring to Biden by name, adding a list of complaints about vote counting"]] | |
| model = AutoModelForSequenceClassification.from_pretrained("tkurtulus/autotrain-rottentomato-2981285985") | |
| tokenizer = AutoTokenizer.from_pretrained("tkurtulus/autotrain-rottentomato-2981285985"); | |
| model.eval(); | |
| label = gr.outputs.Label(num_top_classes=None,label='') | |
| text_h = gr.outputs.HighlightedText(color_map={'Unbiased':'#9ad1A1','Biased':'#db8a8a'},label='Classification') | |
| inputs = gr.inputs.Textbox(placeholder=None, default="", label=None) | |
| app = gr.Interface(fn=classify_text_wrapper,title='Bias classifier',theme='default', | |
| inputs="textbox",layout='unaligned', outputs=[text_h,label], capture_session=True | |
| ,examples=examples) | |
| app.launch(inbrowser=True) |