Spaces:
Paused
Paused
Update models/local_llm.py
Browse files- models/local_llm.py +191 -6
models/local_llm.py
CHANGED
|
@@ -1,7 +1,192 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LLM implementation using Hugging Face Inference Endpoint with OpenAI compatibility.
|
| 3 |
+
"""
|
| 4 |
+
import requests
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import logging
|
| 8 |
+
from typing import Dict, List, Optional, Any
|
| 9 |
|
| 10 |
+
# Configure logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
# Endpoint configuration
|
| 15 |
+
HF_API_KEY = os.environ.get("HF_API_KEY", "")
|
| 16 |
+
ENDPOINT_URL = os.environ.get("ENDPOINT_URL", "https://cg01ow7izccjx1b2.us-east-1.aws.endpoints.huggingface.cloud/v1/chat/completions")
|
| 17 |
+
|
| 18 |
+
# Verify configuration
|
| 19 |
+
if not HF_API_KEY:
|
| 20 |
+
logger.warning("HF_API_KEY environment variable not set")
|
| 21 |
+
if not ENDPOINT_URL:
|
| 22 |
+
logger.warning("ENDPOINT_URL environment variable not set")
|
| 23 |
+
|
| 24 |
+
# Memory store for conversation history
|
| 25 |
+
conversation_memory: Dict[str, List[Dict[str, str]]] = {}
|
| 26 |
+
|
| 27 |
+
def run_llm(input_text: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
| 28 |
+
"""
|
| 29 |
+
Process input text through HF Inference Endpoint.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
input_text: User input to process
|
| 33 |
+
max_tokens: Maximum tokens to generate
|
| 34 |
+
temperature: Temperature for sampling (higher = more random)
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
Generated response text
|
| 38 |
+
"""
|
| 39 |
+
headers = {
|
| 40 |
+
"Authorization": f"Bearer {HF_API_KEY}",
|
| 41 |
+
"Content-Type": "application/json"
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Format messages in OpenAI format
|
| 45 |
+
messages = [
|
| 46 |
+
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."},
|
| 47 |
+
{"role": "user", "content": input_text}
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
payload = {
|
| 51 |
+
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 52 |
+
"messages": messages,
|
| 53 |
+
"max_tokens": max_tokens,
|
| 54 |
+
"temperature": temperature
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
logger.debug(f"Sending request to endpoint with temperature={temperature}, max_tokens={max_tokens}")
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
|
| 61 |
+
response.raise_for_status()
|
| 62 |
+
|
| 63 |
+
result = response.json()
|
| 64 |
+
response_text = result["choices"][0]["message"]["content"]
|
| 65 |
+
logger.debug(f"Generated response of {len(response_text)} characters")
|
| 66 |
+
return response_text
|
| 67 |
+
|
| 68 |
+
except requests.exceptions.RequestException as e:
|
| 69 |
+
error_msg = f"Error calling endpoint: {str(e)}"
|
| 70 |
+
if hasattr(e, 'response') and e.response is not None:
|
| 71 |
+
error_msg += f" - Status code: {e.response.status_code}, Response: {e.response.text}"
|
| 72 |
+
logger.error(error_msg)
|
| 73 |
+
return f"Error generating response: {str(e)}"
|
| 74 |
+
|
| 75 |
+
def run_llm_with_memory(input_text: str, session_id: str = "default", max_tokens: int = 512, temperature: float = 0.7) -> str:
|
| 76 |
+
"""
|
| 77 |
+
Process input with conversation memory.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
input_text: User input to process
|
| 81 |
+
session_id: Unique identifier for conversation
|
| 82 |
+
max_tokens: Maximum tokens to generate
|
| 83 |
+
temperature: Temperature for sampling
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
Generated response text
|
| 87 |
+
"""
|
| 88 |
+
# Initialize memory if needed
|
| 89 |
+
if session_id not in conversation_memory:
|
| 90 |
+
conversation_memory[session_id] = [
|
| 91 |
+
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."}
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
# Add current input to memory
|
| 95 |
+
conversation_memory[session_id].append({"role": "user", "content": input_text})
|
| 96 |
+
|
| 97 |
+
# Prepare the full conversation history
|
| 98 |
+
messages = conversation_memory[session_id].copy()
|
| 99 |
+
|
| 100 |
+
# Keep only the last 10 messages to avoid context length issues
|
| 101 |
+
if len(messages) > 10:
|
| 102 |
+
# Always keep the system message
|
| 103 |
+
messages = [messages[0]] + messages[-9:]
|
| 104 |
+
|
| 105 |
+
headers = {
|
| 106 |
+
"Authorization": f"Bearer {HF_API_KEY}",
|
| 107 |
+
"Content-Type": "application/json"
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
payload = {
|
| 111 |
+
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 112 |
+
"messages": messages,
|
| 113 |
+
"max_tokens": max_tokens,
|
| 114 |
+
"temperature": temperature
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
logger.debug(f"Sending memory-based request for session {session_id}")
|
| 118 |
+
|
| 119 |
+
try:
|
| 120 |
+
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
|
| 121 |
+
response.raise_for_status()
|
| 122 |
+
|
| 123 |
+
result = response.json()
|
| 124 |
+
response_text = result["choices"][0]["message"]["content"]
|
| 125 |
+
|
| 126 |
+
# Save response to memory
|
| 127 |
+
conversation_memory[session_id].append({"role": "assistant", "content": response_text})
|
| 128 |
+
|
| 129 |
+
return response_text
|
| 130 |
+
|
| 131 |
+
except requests.exceptions.RequestException as e:
|
| 132 |
+
error_msg = f"Error calling endpoint: {str(e)}"
|
| 133 |
+
if hasattr(e, 'response') and e.response is not None:
|
| 134 |
+
error_msg += f" - Status code: {e.response.status_code}, Response: {e.response.text}"
|
| 135 |
+
logger.error(error_msg)
|
| 136 |
+
return f"Error generating response: {str(e)}"
|
| 137 |
+
|
| 138 |
+
def clear_memory(session_id: str = "default") -> bool:
|
| 139 |
+
"""
|
| 140 |
+
Clear conversation memory for a specific session.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
session_id: Unique identifier for conversation
|
| 144 |
+
"""
|
| 145 |
+
if session_id in conversation_memory:
|
| 146 |
+
conversation_memory[session_id] = [
|
| 147 |
+
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."}
|
| 148 |
+
]
|
| 149 |
+
return True
|
| 150 |
+
return False
|
| 151 |
+
|
| 152 |
+
def get_memory_sessions() -> List[str]:
|
| 153 |
+
"""
|
| 154 |
+
Get list of active memory sessions.
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
List of session IDs
|
| 158 |
+
"""
|
| 159 |
+
return list(conversation_memory.keys())
|
| 160 |
+
|
| 161 |
+
def get_model_info() -> Dict[str, Any]:
|
| 162 |
+
"""
|
| 163 |
+
Get information about the connected model endpoint.
|
| 164 |
+
|
| 165 |
+
Returns:
|
| 166 |
+
Dictionary with endpoint information
|
| 167 |
+
"""
|
| 168 |
+
return {
|
| 169 |
+
"endpoint_url": ENDPOINT_URL,
|
| 170 |
+
"memory_sessions": len(conversation_memory),
|
| 171 |
+
"model_type": "Meta-Llama-3.1-8B-Instruct (Inference Endpoint)"
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
def test_endpoint() -> Dict[str, Any]:
|
| 175 |
+
"""
|
| 176 |
+
Test the endpoint connection.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Status information
|
| 180 |
+
"""
|
| 181 |
+
try:
|
| 182 |
+
response = run_llm("Hello, this is a test message. Please respond with a short greeting.")
|
| 183 |
+
return {
|
| 184 |
+
"status": "connected",
|
| 185 |
+
"message": "Successfully connected to endpoint",
|
| 186 |
+
"sample_response": response[:50] + "..." if len(response) > 50 else response
|
| 187 |
+
}
|
| 188 |
+
except Exception as e:
|
| 189 |
+
return {
|
| 190 |
+
"status": "error",
|
| 191 |
+
"message": f"Failed to connect to endpoint: {str(e)}"
|
| 192 |
+
}
|