Spaces:
Running
Running
File size: 14,136 Bytes
5e8f045 04df6bf 5e8f045 04df6bf 5e8f045 660474a 5e8f045 04df6bf 5e8f045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import re
import pandas as pd
from openai import OpenAI
from typing import List, Dict, Any, Tuple
import time
import random
from config import Config
from src.utils import get_current_date_str
class FreshEval:
def __init__(self, model: str='solar-pro2', api_key: str=None):
self.model = model
self.api_key = api_key or Config.UPSTAGE_API_KEY
self.client = OpenAI(
api_key=self.api_key,
base_url="https://api.upstage.ai/v1/solar"
)
self.temperature = 0.0
self.max_tokens = 256
self.chat_completions = True
if model.startswith('gpt-4') | model.startswith('solar'):
self.num_organic_results = 15
self.num_related_questions = 3
self.num_questions_and_answers = 3
self.num_retrieved_evidences = 15
else:
self.num_organic_results = 15
self.num_related_questions = 2
self.num_questions_and_answers = 2
self.num_retrieved_evidences = 5
def _is_rate_limit_error(self, error: Exception) -> bool:
"""429 μλ¬ κ°μ§ ν¨μ"""
error_str = str(error)
error_type = type(error).__name__
# 1. HTTP μν μ½λ νμΈ
if hasattr(error, 'response') and hasattr(error.response, 'status_code'):
if error.response.status_code == 429:
# print(f"β
HTTP 429 μλ¬ κ°μ§: {error.response.status_code}")
return True
# 2. ν
μ€νΈ κΈ°λ° κ°μ§ (λ°±μ
)
error_lower = error_str.lower()
if ("429" in error_lower or
"rate" in error_lower or
"limit" in error_lower or
"too_many_requests" in error_lower or
"request limit" in error_lower):
# print(f"β
ν
μ€νΈ κΈ°λ° 429 μλ¬ κ°μ§")
return True
return False
def call_llm_api(self, prompt:str, current_date:str) -> str:
"""LLM API νΈμΆ ν¨μ (ν€ νμ λ° λ°±μ€ν μ§μ)"""
from src.api_key_rotator import get_rotator
rotator = get_rotator()
num_keys = len(rotator.keys)
base_delay = 3.0
def _make_api_call(eval_instance: FreshEval) -> str:
"""API νΈμΆ ν¬νΌ ν¨μ"""
if eval_instance.chat_completions:
# Chat completions API
response = eval_instance.client.chat.completions.create(
model=eval_instance.model,
temperature=eval_instance.temperature,
max_tokens=eval_instance.max_tokens,
messages=[
{
"role": "system",
"content": (
f"You are a helpful assistant. Respond as concisely as possible. Knowledge cutoff: {current_date}."
)
},
{
"role": "user",
"content": "What's today's date?"
},
{
"role": "assistant",
"content": f"Today is {current_date} in Pacific Standard Time."
},
{
"role": "user",
"content": prompt
}
],
)
return response.choices[0].message.content
else:
# Completions API
response = eval_instance.client.completions.create(
model=eval_instance.model,
temperature=eval_instance.temperature,
max_tokens=eval_instance.max_tokens,
prompt=prompt,
)
return response.choices[0].text
# νμ¬ ν€λ‘ μμ
current_key = self.api_key
current_instance = FreshEval(model=self.model, api_key=current_key)
# ν€κ° 1κ°μΈ κ²½μ°: κΈ°μ‘΄ λ°±μ€ν λ‘μ§λ§ μ¬μ©
if num_keys == 1:
max_retries = 7
for attempt in range(max_retries):
try:
return _make_api_call(current_instance)
except Exception as e:
if self._is_rate_limit_error(e):
if attempt < max_retries - 1:
# μ§μμ λ°±μ€ν
delay = base_delay * (2 ** attempt) + random.uniform(0, 1)
time.sleep(delay)
continue
# else:
# print(f"β μ΅λ μ¬μλ νμ μ΄κ³Ό")
raise e
# max_retries μ΄κ³Όν λκΉμ§ return λμ§ μμΌλ©΄ μλ¬ λ°μ
raise Exception("call llm api:μ΅λ μ¬μλ νμ μ΄κ³Ό")
# ν€κ° 2κ° μ΄μμΈ κ²½μ°: ν€ μ ν λ‘μ§ (3μ΄ λκΈ° ν¬ν¨)
# μ±κ³΅ν λκΉμ§ ν€λ₯Ό μννλ©° μλ (μ΅λ λͺ¨λ ν€λ₯Ό 3λ°ν΄κΉμ§)
max_attempts = num_keys * 3 # λͺ¨λ ν€λ₯Ό μ΅λ 3λ°ν΄κΉμ§ μλ
key_attempt_count = 0
# νμ¬ ν€λ‘ 첫 μλ
for attempt in range(max_attempts):
try:
return _make_api_call(current_instance) # μ±κ³΅νλ©΄ μ¦μ λ°ν
except Exception as e:
if self._is_rate_limit_error(e):
key_attempt_count += 1
# λ€μ ν€λ‘ μ ννκΈ° μ μ 2μ΄ λκΈ°
time.sleep(2)
current_key = rotator.pick_key()
# print("π ν€ μ ν")
current_instance = FreshEval(model=self.model, api_key=current_key)
continue # λ€μ ν€λ‘ κ³μ μλ
else:
# 429κ° μλ μλ¬λ μ¦μ μ ν
raise
# μ΅λ μλ νμ μ΄κ³Ό (λͺ¨λ ν€λ₯Ό μ¬λ¬ λ°ν΄ μλνμ§λ§ λͺ¨λ μ€ν¨)
raise Exception(f"λͺ¨λ API ν€μμ 429 μλ¬ λ°μ (μ΅λ {max_attempts}ν μλ)")
def call_fresheval(self, mode:str, question:str, evaluation:str, current_date:str) -> str:
"""FreshEval νκ° ν¨μ"""
fresheval_question = f'\nquestion: {question}{evaluation}'
# νκ²½λ³μ κΈ°λ° ν둬ννΈ(본체: prefix + demo) μ°μ μ¬μ©
env_prompt_body = None
if mode == 'Relaxed':
env_prompt_body = Config.FRESHQA_PROMPT_RELAXED
elif mode == 'Strict':
env_prompt_body = Config.FRESHQA_PROMPT_STRICT
if env_prompt_body and str(env_prompt_body).strip():
base_prompt = str(env_prompt_body).strip()
else:
raise ValueError(f"{mode} νκ° ν둬ννΈ μ€μ μ΄ μμ΅λλ€.")
fresheval_prompt = base_prompt + fresheval_question
# νκ°
answer = self.call_llm_api(fresheval_prompt, current_date)
return answer
def extract_ratings(self, response:str) -> Tuple[bool, Dict[str, str]]:
"""νκ° κ²°κ³Όμμ λ±κΈ μΆμΆ"""
def _clean(text: str) -> str:
# μλ μ₯μ/곡백 μ κ±° + λ΄λΆ νμ μ 리 + μλ¬Έμν
text = re.sub(r'^[*`_~\s]+|[*`_~\s]+$', '', text)
text = re.sub(r'[*`_~]', '', text)
return text.strip().strip('.').strip().lower()
def _judge(val: str):
"""
λ¬Έμμ΄μμ correct/incorrect νμ .
- 'incorrect'κ° λ³΄μ΄λ©΄ 무쑰건 FALSE
- 'partially correct'λ λͺ¨νΈ β None
- 'correct'λ TRUE
"""
if re.search(r'(?i)\bincorrect\b', val):
return 'FALSE'
if re.search(r'(?i)\bpartial(?:ly)?\s+correct\b', val):
return None
if re.search(r'(?i)\bcorrect\b', val):
return 'TRUE'
return None
def _from_label(block_label: str):
"""
λΌλ²¨(μ: 'Final Evaluation' λλ 'Evaluation') κΈ°μ€μΌλ‘
- κ°μ μ€ μΊ‘μ² λ¨Όμ μλ
- μ€ν¨νλ©΄ λΌλ²¨ μ΄ν ~ λ€μ λΉ μ€ μ΄μ λ²μμμ νμ ν€μλ νμ
"""
# κ°μ μ€ μΊ‘μ²: λΌλ²¨ Β± μ₯μ Β± μ½λ‘ μ΄ν ~ μ€λ
same_line = re.search(
rf'(?i){block_label}\s*(?:[*`_~]*\s*:\s*|:\s*[*`_~]*)\s*([^\r\n]+)',
response
)
if same_line:
val = _clean(same_line.group(1))
j = _judge(val)
if j is not None:
return j
# μμΉλ§ μ°Ύκ³ (κ° μμ΄ μ€λ°κΏλ μΌμ΄μ€), λ€μ λΉ μ€(or μΉμ
) μ κΉμ§ μ€μΊ
pos = re.search(
rf'(?i){block_label}\s*(?:[*`_~]*\s*:\s*|:\s*[*`_~]*)',
response
)
if pos:
tail = response[pos.end():]
# λ€μ 'λΉ μ€(μ°μ κ°ν)' λλ λ€μ μΉμ
μμ μ κΉμ§λ§ λ³Έλ€ (λ무 λ©λ¦¬ μκ°λλ‘)
m_stop = re.search(r'\n\s*\n', tail)
segment = tail[:m_stop.start()] if m_stop else tail[:300] # μμ ν μν
seg_clean = _clean(segment)
j = _judge(seg_clean)
if j is not None:
return j
return None
# 1) Final Evaluation μ΅μ°μ
final_judgement = _from_label('final\s+evaluation')
if final_judgement:
return True, {'rating': final_judgement}
# 2) Evaluation
eval_judgement = _from_label('evaluation')
if eval_judgement:
return True, {'rating': eval_judgement}
# 3) ν΄λ°±: credited λ¬Έμ₯
if re.search(r'(?i)thus,\s*the\s*response\s*is\s*credited\b', response):
return True, {'rating': 'TRUE'}
if re.search(r'(?i)thus,\s*the\s*response\s*is\s*not\s*credited\b', response):
return True, {'rating': 'FALSE'}
# 4) μ€ν¨
return False, {'rating': None}
def evaluate_single_row(self, row: pd.Series, mode: str, current_date:str) -> Dict[str, Any]:
"""λ¨μΌ ν νκ°"""
question = row['question']
response = row['model_response']
correct_answers = [row[f'answer_{i}'] for i in range(10)]
correct_answers = [str(x) for x in correct_answers if pd.notna(x) and str(x).strip()]
# model_responseκ° λΉμ΄μκ±°λ NaNμΈ κ²½μ° λ°λ‘ νλ Έλ€λ κ²°κ³Όλ‘ μ²λ¦¬νκ³ return
if pd.isna(response) or (isinstance(response, str) and response.strip() == ''):
# print('model_responseκ° λΉμ΄μμ. rating=0μΌλ‘ μ²λ¦¬')
row_dict = row.to_dict()
row_dict['rating'] = 0
row_dict['explanation'] = "model_responseκ° λΉμ΄μμ"
return row_dict
# νκ° ν
νλ¦Ώ μμ±
evaluation_template = (
"\ncorrect answer(s): {correct_answers}"
"\nresponse: {response}"
"\ncomment: "
)
evaluation = evaluation_template.format(
correct_answers=' | '.join(correct_answers),
response=response,
)
# νκ°
fresheval_response = self.call_fresheval(
mode=mode,
question=question,
evaluation=evaluation,
current_date=current_date
)
is_valid_eval, eval_result = self.extract_ratings(fresheval_response)
# if is_valid_eval:
# print('μλ£')
# μ¬νκ° νμ μ ν (μ΅λ 3ν)
max_retries = 3
retry_count = 0
# μ¬μλ loop
while not is_valid_eval and retry_count < max_retries:
retry_count += 1
# print(f'μ ν¨νμ§ μμ νκ°, μ¬νκ° μ€... ({retry_count}/{max_retries})\n response: {fresheval_response}')
fresheval_response = self.call_fresheval(
mode=mode,
question=question,
evaluation=evaluation,
current_date=current_date
)
is_valid_eval, eval_result = self.extract_ratings(fresheval_response)
# if is_valid_eval:
# print('μλ£')
# μ΅λ μ¬μλ νμ μ΄κ³Ό μ κΈ°λ³Έ κ° μ¬μ©
if not is_valid_eval:
# print(f'β οΈ μ΅λ μ¬μλ νμ({max_retries}) μ΄κ³Ό. κΈ°λ³Έκ° μ¬μ©: rating=0')
eval_result = {'rating': 0}
fresheval_response = "μ¬μλ νμ μ΄κ³Όλ‘ μΈν κΈ°λ³Έ νκ°"
row_dict = row.to_dict()
row_dict['rating'] = eval_result['rating']
row_dict['explanation'] = fresheval_response
# π DEBUG: FALSEμΈ κ²½μ°μλ§ μμΈ μΆλ ₯
# if eval_result['rating'] == 'FALSE':
# print(f"\n{'='*80}")
# print(f"β FALSE νκ°λ μ§λ¬Έ")
# print(f" Mode: {mode}")
# print(f" Question: {question}")
# print(f" Correct Answers: {' | '.join(correct_answers)}")
# print(f" Model Response: {response}")
# print(f"\n LLM νκ° μλ΅:")
# print(f" {fresheval_response}")
# print(f" μ΅μ’
Rating: {eval_result['rating']}")
# print(f"{'='*80}\n")
return row_dict
def evaluate_dataframe(self, df: pd.DataFrame, mode: str) -> pd.DataFrame:
"""λ°μ΄ν°νλ μ νκ°"""
freshevals = []
current_date = get_current_date_str()
len_df = len(df)
for index, row in df.iterrows():
print(f'{mode} νκ° μ€... {index+1}/{len_df}')
row_dict = self.evaluate_single_row(row, mode, current_date)
freshevals.append(row_dict)
return pd.DataFrame(freshevals) |