Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
|
| 8 |
def get_available_free(use_cache = False):
|
| 9 |
if use_cache:
|
| 10 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
| 11 |
-
print("Loading data from file...")
|
| 12 |
return pd.read_csv("data.csv").to_dict(orient='list')
|
| 13 |
models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
|
| 14 |
models = models_dict['text-generation'] + models_dict['text2text-generation']
|
|
@@ -22,37 +22,41 @@ def get_available_free(use_cache = False):
|
|
| 22 |
"Chat Completion": [],
|
| 23 |
"Vision": []
|
| 24 |
}
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
text_available = False
|
| 27 |
chat_available = False
|
| 28 |
vision_available = False
|
| 29 |
if m in models_vision:
|
| 30 |
vision_available = True
|
| 31 |
pro_sub = False
|
|
|
|
| 32 |
try:
|
| 33 |
InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).text_generation("Hi.", max_new_tokens=1)
|
| 34 |
text_available = True
|
| 35 |
except Exception as e:
|
| 36 |
-
print(e)
|
| 37 |
if e and "Model requires a Pro subscription" in str(e):
|
| 38 |
pro_sub = True
|
| 39 |
if e and "Rate limit reached" in str(e):
|
| 40 |
-
print("Rate Limited!!")
|
| 41 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
| 42 |
-
print("Loading data from file...")
|
| 43 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
| 44 |
return []
|
| 45 |
try:
|
| 46 |
InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
|
| 47 |
chat_available = True
|
| 48 |
except Exception as e:
|
| 49 |
-
print(e)
|
| 50 |
if e and "Model requires a Pro subscription" in str(e):
|
| 51 |
pro_sub = True
|
| 52 |
if e and "Rate limit reached" in str(e):
|
| 53 |
-
print("Rate Limited!!")
|
| 54 |
if os.path.exists("data.csv"):
|
| 55 |
-
print("Loading data from file...")
|
| 56 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
| 57 |
return []
|
| 58 |
models_conclusion["Model"].append(m)
|
|
|
|
| 8 |
def get_available_free(use_cache = False):
|
| 9 |
if use_cache:
|
| 10 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
| 11 |
+
# print("Loading data from file...")
|
| 12 |
return pd.read_csv("data.csv").to_dict(orient='list')
|
| 13 |
models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
|
| 14 |
models = models_dict['text-generation'] + models_dict['text2text-generation']
|
|
|
|
| 22 |
"Chat Completion": [],
|
| 23 |
"Vision": []
|
| 24 |
}
|
| 25 |
+
|
| 26 |
+
all_models = list(set(models + models_vision + models_others))
|
| 27 |
+
print(all_models)
|
| 28 |
+
for m in all_models:
|
| 29 |
text_available = False
|
| 30 |
chat_available = False
|
| 31 |
vision_available = False
|
| 32 |
if m in models_vision:
|
| 33 |
vision_available = True
|
| 34 |
pro_sub = False
|
| 35 |
+
print(m)
|
| 36 |
try:
|
| 37 |
InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).text_generation("Hi.", max_new_tokens=1)
|
| 38 |
text_available = True
|
| 39 |
except Exception as e:
|
| 40 |
+
# print(e)
|
| 41 |
if e and "Model requires a Pro subscription" in str(e):
|
| 42 |
pro_sub = True
|
| 43 |
if e and "Rate limit reached" in str(e):
|
| 44 |
+
# print("Rate Limited!!")
|
| 45 |
if os.path.exists(str(os.getcwd())+"/data.csv"):
|
| 46 |
+
# print("Loading data from file...")
|
| 47 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
| 48 |
return []
|
| 49 |
try:
|
| 50 |
InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
|
| 51 |
chat_available = True
|
| 52 |
except Exception as e:
|
| 53 |
+
# print(e)
|
| 54 |
if e and "Model requires a Pro subscription" in str(e):
|
| 55 |
pro_sub = True
|
| 56 |
if e and "Rate limit reached" in str(e):
|
| 57 |
+
# print("Rate Limited!!")
|
| 58 |
if os.path.exists("data.csv"):
|
| 59 |
+
# print("Loading data from file...")
|
| 60 |
return pd.read_csv(str(os.getcwd())+"/data.csv").to_dict(orient='list')
|
| 61 |
return []
|
| 62 |
models_conclusion["Model"].append(m)
|