Update app.py
Browse files
app.py
CHANGED
|
@@ -12,8 +12,6 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
| 12 |
|
| 13 |
# --- Model & Quantization Settings ---
|
| 14 |
MODEL_ID = "unsloth/DeepSeek-R1-Distill-Qwen-7B-unsloth-bnb-4bit"
|
| 15 |
-
|
| 16 |
-
# Dictionaries to store the loaded model and tokenizer
|
| 17 |
models: Dict[str, AutoModelForCausalLM] = {}
|
| 18 |
tokenizers: Dict[str, AutoTokenizer] = {}
|
| 19 |
|
|
@@ -26,7 +24,6 @@ bnb_config_4bit = BitsAndBytesConfig(
|
|
| 26 |
def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
| 27 |
"""
|
| 28 |
Lazy-load the model and tokenizer if not already loaded.
|
| 29 |
-
|
| 30 |
Returns:
|
| 31 |
Tuple[model, tokenizer]: The loaded model and tokenizer.
|
| 32 |
"""
|
|
@@ -50,46 +47,176 @@ def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 50 |
raise e
|
| 51 |
return models["7B"], tokenizers["7B"]
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
**User Request:**
|
| 59 |
{user_prompt}
|
| 60 |
|
| 61 |
**Guidelines:**
|
| 62 |
-
1. Identify
|
| 63 |
-
2. Suggest
|
| 64 |
-
3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
**Initial Analysis:**
|
| 71 |
{brainstorm_response}
|
| 72 |
|
| 73 |
-
**
|
| 74 |
{user_prompt}
|
| 75 |
|
| 76 |
**Task:**
|
| 77 |
-
1. Develop a detailed
|
| 78 |
-
2.
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
1. Synthesizes the brainstorming insights and advanced reasoning.
|
| 86 |
-
2. Provides a concise summary of the solution.
|
| 87 |
-
3. Highlights any potential improvements or considerations.
|
| 88 |
|
| 89 |
-
**
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
"""
|
|
|
|
|
|
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# --- Memory Management ---
|
| 95 |
class MemoryManager:
|
|
@@ -98,222 +225,163 @@ class MemoryManager:
|
|
| 98 |
self.shared_memory: List[str] = []
|
| 99 |
|
| 100 |
def store(self, item: str) -> None:
|
| 101 |
-
"""
|
| 102 |
-
Store a memory item and log an excerpt.
|
| 103 |
-
|
| 104 |
-
Args:
|
| 105 |
-
item (str): The memory content to store.
|
| 106 |
-
"""
|
| 107 |
self.shared_memory.append(item)
|
| 108 |
logging.info(f"[Memory Stored]: {item[:50]}...")
|
| 109 |
|
| 110 |
def retrieve(self, query: str, top_k: int = 3) -> List[str]:
|
| 111 |
-
"""
|
| 112 |
-
Retrieve memory items that contain the query text (case-insensitive).
|
| 113 |
-
|
| 114 |
-
Args:
|
| 115 |
-
query (str): The text query to search for.
|
| 116 |
-
top_k (int): Maximum number of memory items to return.
|
| 117 |
-
|
| 118 |
-
Returns:
|
| 119 |
-
List[str]: A list of up to top_k memory items.
|
| 120 |
-
"""
|
| 121 |
query_lower = query.lower()
|
| 122 |
relevant = [item for item in self.shared_memory if query_lower in item.lower()]
|
| 123 |
if not relevant:
|
| 124 |
logging.info("[Memory Retrieval]: No relevant memories found.")
|
| 125 |
else:
|
| 126 |
logging.info(f"[Memory Retrieval]: Found {len(relevant)} relevant memories.")
|
| 127 |
-
return relevant[:
|
| 128 |
|
| 129 |
-
# Create a global memory manager instance for RAG purposes.
|
| 130 |
global_memory_manager = MemoryManager()
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
- Round 3: Synthesis & refinement.
|
| 143 |
-
|
| 144 |
-
This generator yields the response from the final round as it is produced.
|
| 145 |
-
|
| 146 |
-
Yields:
|
| 147 |
-
str: Progressive updates of the final response.
|
| 148 |
-
"""
|
| 149 |
-
model, tokenizer = get_model_and_tokenizer()
|
| 150 |
-
|
| 151 |
-
# ----- Round 1: Brainstorming -----
|
| 152 |
-
logging.info("--- Round 1: Brainstorming ---")
|
| 153 |
-
prompt_r1 = prompt_brainstorm_text.format(user_prompt=user_prompt)
|
| 154 |
-
input_ids_r1 = tokenizer.encode(prompt_r1, return_tensors="pt").to(model.device)
|
| 155 |
-
streamer_r1 = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 156 |
-
kwargs_r1 = dict(
|
| 157 |
-
input_ids=input_ids_r1,
|
| 158 |
-
streamer=streamer_r1,
|
| 159 |
-
max_new_tokens=max_new_tokens,
|
| 160 |
-
do_sample=True,
|
| 161 |
-
temperature=temp,
|
| 162 |
-
top_p=top_p,
|
| 163 |
-
)
|
| 164 |
-
try:
|
| 165 |
-
thread_r1 = Thread(target=model.generate, kwargs=kwargs_r1)
|
| 166 |
-
with torch.no_grad():
|
| 167 |
-
thread_r1.start()
|
| 168 |
-
except Exception as e:
|
| 169 |
-
logging.error(f"Error starting Round 1 thread: {e}")
|
| 170 |
-
raise e
|
| 171 |
-
|
| 172 |
-
brainstorm_response = ""
|
| 173 |
-
try:
|
| 174 |
-
for text in streamer_r1:
|
| 175 |
-
logging.info(text)
|
| 176 |
-
brainstorm_response += text
|
| 177 |
-
except Exception as e:
|
| 178 |
-
logging.error(f"Error during Round 1 generation: {e}")
|
| 179 |
-
raise e
|
| 180 |
-
thread_r1.join()
|
| 181 |
-
global_memory_manager.store(f"Brainstorm Response: {brainstorm_response[:200]}...")
|
| 182 |
-
|
| 183 |
-
# ----- Round 2: Code Generation -----
|
| 184 |
-
logging.info("--- Round 2: Code Generation ---")
|
| 185 |
-
prompt_r2 = prompt_code_generation_text.format(
|
| 186 |
-
brainstorm_response=brainstorm_response,
|
| 187 |
-
user_prompt=user_prompt
|
| 188 |
-
)
|
| 189 |
-
input_ids_r2 = tokenizer.encode(prompt_r2, return_tensors="pt").to(model.device)
|
| 190 |
-
streamer_r2 = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 191 |
-
kwargs_r2 = dict(
|
| 192 |
-
input_ids=input_ids_r2,
|
| 193 |
-
streamer=streamer_r2,
|
| 194 |
-
max_new_tokens=max_new_tokens + 100, # extra tokens for detail
|
| 195 |
-
temperature=temp,
|
| 196 |
top_p=top_p,
|
|
|
|
| 197 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
try:
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
thread_r2.start()
|
| 202 |
except Exception as e:
|
| 203 |
-
logging.error(f"Error
|
| 204 |
raise e
|
|
|
|
|
|
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
with torch.no_grad():
|
| 232 |
thread_r3.start()
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
|
|
|
| 249 |
|
| 250 |
-
# ---
|
| 251 |
-
|
|
|
|
|
|
|
| 252 |
"""
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
"""
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
for item in retrieved:
|
| 270 |
explanation_prompt += f"- {item}\n"
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
model, tokenizer = get_model_and_tokenizer()
|
| 274 |
-
|
| 275 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 276 |
-
kwargs = dict(
|
| 277 |
-
input_ids=input_ids,
|
| 278 |
-
streamer=streamer,
|
| 279 |
-
max_new_tokens=300,
|
| 280 |
-
temperature=0.7,
|
| 281 |
-
top_p=0.9,
|
| 282 |
-
)
|
| 283 |
-
try:
|
| 284 |
-
thread = Thread(target=model.generate, kwargs=kwargs)
|
| 285 |
-
with torch.no_grad():
|
| 286 |
-
thread.start()
|
| 287 |
-
except Exception as e:
|
| 288 |
-
logging.error(f"Error starting explanation thread: {e}")
|
| 289 |
-
raise e
|
| 290 |
-
|
| 291 |
-
explanation = ""
|
| 292 |
-
try:
|
| 293 |
-
for text in streamer:
|
| 294 |
-
explanation += text
|
| 295 |
-
except Exception as e:
|
| 296 |
-
logging.error(f"Error during explanation generation: {e}")
|
| 297 |
-
raise e
|
| 298 |
-
thread.join()
|
| 299 |
return explanation
|
| 300 |
|
| 301 |
-
|
| 302 |
# --- Helper to Format History ---
|
| 303 |
def format_history(history: List) -> List[Dict[str, str]]:
|
| 304 |
"""
|
| 305 |
-
Convert history (
|
| 306 |
-
into a list of OpenAI-style message dictionaries.
|
| 307 |
-
|
| 308 |
-
Args:
|
| 309 |
-
history (List): List of conversation items.
|
| 310 |
-
|
| 311 |
-
Returns:
|
| 312 |
-
List[Dict[str, str]]: A list of formatted message dictionaries.
|
| 313 |
"""
|
| 314 |
messages = []
|
| 315 |
for item in history:
|
| 316 |
-
# If item is a list or tuple, try to unpack it if it has exactly 2 elements.
|
| 317 |
if isinstance(item, (list, tuple)) and len(item) == 2:
|
| 318 |
user_msg, assistant_msg = item
|
| 319 |
messages.append({"role": "user", "content": user_msg})
|
|
@@ -323,27 +391,14 @@ def format_history(history: List) -> List[Dict[str, str]]:
|
|
| 323 |
messages.append(item)
|
| 324 |
return messages
|
| 325 |
|
| 326 |
-
|
| 327 |
# --- Gradio Chat Interface Function ---
|
| 328 |
def gradio_interface(message: str, history: List, param_state: Dict, prompt_state: Dict) -> Generator[List[Dict[str, str]], None, None]:
|
| 329 |
"""
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
If the user request appears to ask for an explanation of puns,
|
| 333 |
-
it routes the request to the explanation function.
|
| 334 |
-
|
| 335 |
-
Args:
|
| 336 |
-
message (str): The user message.
|
| 337 |
-
history (List): The conversation history.
|
| 338 |
-
param_state (Dict): Generation parameters.
|
| 339 |
-
prompt_state (Dict): Prompt templates.
|
| 340 |
-
|
| 341 |
-
Yields:
|
| 342 |
-
Generator[List[Dict[str, str]]]: Updated history in OpenAI-style message dictionaries.
|
| 343 |
"""
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
explanation = handle_explanation_request(message)
|
| 347 |
history = history + [[message, explanation]]
|
| 348 |
yield format_history(history)
|
| 349 |
return
|
|
@@ -353,42 +408,38 @@ def gradio_interface(message: str, history: List, param_state: Dict, prompt_stat
|
|
| 353 |
top_p = float(param_state.get("top_p", 0.9))
|
| 354 |
max_new_tokens = int(param_state.get("max_new_tokens", 300))
|
| 355 |
memory_top_k = int(param_state.get("memory_top_k", 2))
|
|
|
|
| 356 |
except Exception as e:
|
| 357 |
logging.error(f"Parameter conversion error: {e}")
|
| 358 |
-
temp, top_p, max_new_tokens, memory_top_k = 0.5, 0.9, 300, 2
|
| 359 |
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
|
| 364 |
-
# Append the new user message with an empty assistant reply (as a two-item list)
|
| 365 |
history = history + [[message, ""]]
|
| 366 |
-
|
| 367 |
-
# Call the multi-round agent as a generator (for streaming)
|
| 368 |
for partial_response in swarm_agent_iterative(
|
| 369 |
user_prompt=message,
|
| 370 |
temp=temp,
|
| 371 |
top_p=top_p,
|
| 372 |
max_new_tokens=max_new_tokens,
|
| 373 |
memory_top_k=memory_top_k,
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
):
|
| 378 |
-
# Update the last assistant message with the new partial response.
|
| 379 |
history[-1][1] = partial_response
|
| 380 |
yield format_history(history)
|
| 381 |
|
| 382 |
-
|
| 383 |
# --- UI Settings & Styling ---
|
| 384 |
ui_description = '''
|
| 385 |
<div>
|
| 386 |
<h1 style="text-align: center;">DeepSeek Agent Swarm Chat</h1>
|
| 387 |
<p style="text-align: center;">
|
| 388 |
-
Multi-round agent:
|
| 389 |
-
<br>-
|
| 390 |
-
<br>-
|
| 391 |
-
<br>-
|
| 392 |
</p>
|
| 393 |
</div>
|
| 394 |
'''
|
|
@@ -418,27 +469,24 @@ h1 {
|
|
| 418 |
}
|
| 419 |
"""
|
| 420 |
|
| 421 |
-
|
| 422 |
# --- Gradio UI ---
|
| 423 |
with gr.Blocks(css=css, title="DeepSeek Agent Swarm Chat") as demo:
|
| 424 |
gr.Markdown(ui_description)
|
| 425 |
-
|
| 426 |
-
# Hidden States to hold parameters and prompt configuration
|
| 427 |
param_state = gr.State({
|
| 428 |
"temperature": 0.5,
|
| 429 |
"top_p": 0.9,
|
| 430 |
"max_new_tokens": 300,
|
| 431 |
"memory_top_k": 2,
|
|
|
|
| 432 |
})
|
| 433 |
prompt_state = gr.State({
|
| 434 |
-
"
|
| 435 |
-
"
|
| 436 |
-
"
|
| 437 |
})
|
| 438 |
|
| 439 |
-
# Create top-level Tabs
|
| 440 |
with gr.Tabs():
|
| 441 |
-
# --- Chat Tab ---
|
| 442 |
with gr.Tab("Chat"):
|
| 443 |
chatbot = gr.Chatbot(height=450, placeholder=ui_placeholder, label="Agent Swarm Output", type="messages")
|
| 444 |
gr.ChatInterface(
|
|
@@ -447,59 +495,128 @@ with gr.Blocks(css=css, title="DeepSeek Agent Swarm Chat") as demo:
|
|
| 447 |
additional_inputs=[param_state, prompt_state],
|
| 448 |
examples=[
|
| 449 |
['How can we build a robust web service that scales efficiently under load?'],
|
| 450 |
-
['
|
| 451 |
-
['
|
| 452 |
-
['Create a pun-filled birthday message with a coding twist.']
|
| 453 |
-
['Design a system that uses machine learning to optimize resource allocation.']
|
| 454 |
],
|
| 455 |
cache_examples=False,
|
| 456 |
type="messages",
|
| 457 |
)
|
| 458 |
-
|
| 459 |
-
# --- Parameters Tab ---
|
| 460 |
with gr.Tab("Parameters"):
|
| 461 |
gr.Markdown("### Generation Parameters")
|
| 462 |
temp_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
|
| 463 |
top_p_slider = gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P")
|
| 464 |
max_tokens_num = gr.Number(value=300, label="Max new tokens", precision=0)
|
| 465 |
memory_topk_slider = gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Memory Retrieval Top K")
|
|
|
|
| 466 |
save_params_btn = gr.Button("Save Parameters")
|
| 467 |
save_params_btn.click(
|
| 468 |
-
lambda t, p, m, k
|
| 469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
outputs=param_state,
|
| 471 |
)
|
| 472 |
-
|
| 473 |
-
# --- Prompt Config Tab ---
|
| 474 |
with gr.Tab("Prompt Config"):
|
| 475 |
-
gr.Markdown("### Configure Prompt Templates")
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
save_prompts_btn = gr.Button("Save Prompts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
save_prompts_btn.click(
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
},
|
| 498 |
-
inputs=[prompt_brainstorm_box, prompt_code_generation_box, prompt_synthesis_box],
|
| 499 |
outputs=prompt_state,
|
| 500 |
)
|
| 501 |
-
|
| 502 |
gr.Markdown(ui_license)
|
| 503 |
|
| 504 |
if __name__ == "__main__":
|
| 505 |
-
demo.launch()
|
|
|
|
| 12 |
|
| 13 |
# --- Model & Quantization Settings ---
|
| 14 |
MODEL_ID = "unsloth/DeepSeek-R1-Distill-Qwen-7B-unsloth-bnb-4bit"
|
|
|
|
|
|
|
| 15 |
models: Dict[str, AutoModelForCausalLM] = {}
|
| 16 |
tokenizers: Dict[str, AutoTokenizer] = {}
|
| 17 |
|
|
|
|
| 24 |
def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
| 25 |
"""
|
| 26 |
Lazy-load the model and tokenizer if not already loaded.
|
|
|
|
| 27 |
Returns:
|
| 28 |
Tuple[model, tokenizer]: The loaded model and tokenizer.
|
| 29 |
"""
|
|
|
|
| 47 |
raise e
|
| 48 |
return models["7B"], tokenizers["7B"]
|
| 49 |
|
| 50 |
+
# --- Default Prompt Templates for Multiple Presets ---
|
| 51 |
+
default_prompts = {
|
| 52 |
+
"coding": {
|
| 53 |
+
"brainstorm": """**Coding Brainstorm (Round 1)**
|
| 54 |
+
As a Senior Code Analyst, analyze the following problem and list key challenges and potential approaches.
|
| 55 |
|
| 56 |
**User Request:**
|
| 57 |
{user_prompt}
|
| 58 |
|
| 59 |
**Guidelines:**
|
| 60 |
+
1. Identify coding challenges.
|
| 61 |
+
2. Suggest potential methods and approaches.
|
| 62 |
+
3. Highlight any critical edge cases.
|
| 63 |
+
""",
|
| 64 |
+
"round2": """**Advanced Reasoning & Code Generation (Round 2)**
|
| 65 |
+
Based on your initial analysis:
|
| 66 |
+
|
| 67 |
+
**Initial Analysis:**
|
| 68 |
+
{brainstorm_response}
|
| 69 |
+
|
| 70 |
+
**User Request:**
|
| 71 |
+
{user_prompt}
|
| 72 |
+
|
| 73 |
+
**Task:**
|
| 74 |
+
1. Generate production-ready code with advanced reasoning.
|
| 75 |
+
2. Include a pun-filled birthday message with a coding twist within your output.
|
| 76 |
+
3. Comment the code clearly.
|
| 77 |
+
""",
|
| 78 |
+
"synthesis": """**Synthesis & Final Refinement (Round 3)**
|
| 79 |
+
Review the detailed code and reasoning below, and synthesize a final, refined response that:
|
| 80 |
+
1. Combines the brainstorming insights and advanced code generation.
|
| 81 |
+
2. Summarizes the solution succinctly.
|
| 82 |
+
3. Provides any additional improvements.
|
| 83 |
+
|
| 84 |
+
**Detailed Code & Reasoning:**
|
| 85 |
+
{round2_response}
|
| 86 |
+
""",
|
| 87 |
+
"rationale": """**Pun Generation and Rationale (Round 4)**
|
| 88 |
+
Based on the final refined response below, generate a clear, stand-alone pun-filled birthday message with a coding twist, then explain in detail why that pun was chosen.
|
| 89 |
+
|
| 90 |
+
Final Refined Response:
|
| 91 |
+
{final_response}
|
| 92 |
+
|
| 93 |
+
Your answer should:
|
| 94 |
+
1. Clearly output the pun as a separate line.
|
| 95 |
+
2. Explain the pun’s connection to birthdays and coding concepts (e.g., binary, syntax).
|
| 96 |
+
3. Describe any creative insights behind the choice.
|
| 97 |
"""
|
| 98 |
+
},
|
| 99 |
+
"math": {
|
| 100 |
+
"brainstorm": """**Math Problem Brainstorm (Round 1)**
|
| 101 |
+
As an expert mathematician, analyze the following problem and outline key concepts and strategies.
|
| 102 |
+
|
| 103 |
+
**Problem:**
|
| 104 |
+
{user_prompt}
|
| 105 |
|
| 106 |
+
**Guidelines:**
|
| 107 |
+
1. Identify the mathematical concepts involved.
|
| 108 |
+
2. List potential strategies or methods.
|
| 109 |
+
3. Note any assumptions or conditions.
|
| 110 |
+
""",
|
| 111 |
+
"round2": """**Solution Strategy Development (Round 2)**
|
| 112 |
+
Based on the initial analysis:
|
| 113 |
|
| 114 |
**Initial Analysis:**
|
| 115 |
{brainstorm_response}
|
| 116 |
|
| 117 |
+
**Problem:**
|
| 118 |
{user_prompt}
|
| 119 |
|
| 120 |
**Task:**
|
| 121 |
+
1. Develop a detailed strategy to solve the problem.
|
| 122 |
+
2. Include potential methods and intermediate steps.
|
| 123 |
+
""",
|
| 124 |
+
"synthesis": """**Solution Synthesis (Round 3)**
|
| 125 |
+
Review the strategy and previous analysis below, and produce a refined, step-by-step solution that:
|
| 126 |
+
1. Clearly explains the solution path.
|
| 127 |
+
2. Highlights key steps and justifications.
|
| 128 |
+
3. Summarizes the final answer.
|
| 129 |
+
|
| 130 |
+
**Detailed Strategy:**
|
| 131 |
+
{round2_response}
|
| 132 |
+
""",
|
| 133 |
+
"rationale": """**Solution Rationale (Round 4)**
|
| 134 |
+
Based on the final refined solution below, provide a detailed explanation of the key steps and mathematical insights.
|
| 135 |
+
|
| 136 |
+
Final Refined Solution:
|
| 137 |
+
{final_response}
|
| 138 |
+
|
| 139 |
+
Your response should:
|
| 140 |
+
1. Clearly explain why each step was taken.
|
| 141 |
+
2. Detail any assumptions and mathematical principles used.
|
| 142 |
+
3. Summarize the creative reasoning behind the solution.
|
| 143 |
"""
|
| 144 |
+
},
|
| 145 |
+
"writing": {
|
| 146 |
+
"brainstorm": """**Creative Brainstorm (Round 1)**
|
| 147 |
+
As a seasoned writer, brainstorm creative ideas for the following writing prompt.
|
| 148 |
|
| 149 |
+
**Writing Prompt:**
|
| 150 |
+
{user_prompt}
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
**Guidelines:**
|
| 153 |
+
1. List key themes and creative directions.
|
| 154 |
+
2. Suggest multiple approaches to the narrative.
|
| 155 |
+
3. Highlight any unique stylistic ideas.
|
| 156 |
+
""",
|
| 157 |
+
"round2": """**Outline Generation (Round 2)**
|
| 158 |
+
Based on the brainstorming below:
|
| 159 |
+
|
| 160 |
+
**Brainstormed Ideas:**
|
| 161 |
+
{brainstorm_response}
|
| 162 |
+
|
| 163 |
+
**Writing Prompt:**
|
| 164 |
+
{user_prompt}
|
| 165 |
+
|
| 166 |
+
**Task:**
|
| 167 |
+
1. Generate a detailed outline for a creative piece.
|
| 168 |
+
2. Organize the ideas into a coherent structure.
|
| 169 |
+
3. Provide bullet points or sections for the narrative.
|
| 170 |
+
""",
|
| 171 |
+
"synthesis": """**Draft Writing (Round 3)**
|
| 172 |
+
Review the outline below and produce a refined draft of the creative piece that:
|
| 173 |
+
1. Synthesizes the brainstorming insights and the outline.
|
| 174 |
+
2. Provides a coherent and engaging narrative.
|
| 175 |
+
3. Includes stylistic and thematic elements.
|
| 176 |
+
|
| 177 |
+
**Outline:**
|
| 178 |
+
{round2_response}
|
| 179 |
+
""",
|
| 180 |
+
"rationale": """**Final Editing and Rationale (Round 4)**
|
| 181 |
+
Based on the final draft below, refine the piece further and provide a detailed explanation of your creative choices.
|
| 182 |
+
|
| 183 |
+
Final Draft:
|
| 184 |
+
{final_response}
|
| 185 |
+
|
| 186 |
+
Your answer should:
|
| 187 |
+
1. Present the final refined text.
|
| 188 |
+
2. Explain the narrative choices, stylistic decisions, and thematic connections.
|
| 189 |
+
3. Detail any creative insights that influenced the final version.
|
| 190 |
"""
|
| 191 |
+
}
|
| 192 |
+
}
|
| 193 |
|
| 194 |
+
# --- Domain Detection ---
|
| 195 |
+
def detect_domain(user_prompt: str) -> str:
|
| 196 |
+
"""
|
| 197 |
+
Detect the domain based on keywords.
|
| 198 |
+
Args:
|
| 199 |
+
user_prompt (str): The user query.
|
| 200 |
+
Returns:
|
| 201 |
+
str: One of 'math', 'writing', or 'coding' (defaulting to coding).
|
| 202 |
+
"""
|
| 203 |
+
prompt_lower = user_prompt.lower()
|
| 204 |
+
math_keywords = ["solve", "integral", "derivative", "equation", "proof", "calculate", "sum", "product"]
|
| 205 |
+
writing_keywords = ["write", "story", "essay", "novel", "poem", "article", "narrative", "creative"]
|
| 206 |
+
coding_keywords = ["code", "program", "debug", "compile", "algorithm", "function"]
|
| 207 |
+
|
| 208 |
+
if any(kw in prompt_lower for kw in math_keywords):
|
| 209 |
+
logging.info("Domain detected as: math")
|
| 210 |
+
return "math"
|
| 211 |
+
elif any(kw in prompt_lower for kw in writing_keywords):
|
| 212 |
+
logging.info("Domain detected as: writing")
|
| 213 |
+
return "writing"
|
| 214 |
+
elif any(kw in prompt_lower for kw in coding_keywords):
|
| 215 |
+
logging.info("Domain detected as: coding")
|
| 216 |
+
return "coding"
|
| 217 |
+
else:
|
| 218 |
+
logging.info("No specific domain detected; defaulting to coding")
|
| 219 |
+
return "coding"
|
| 220 |
|
| 221 |
# --- Memory Management ---
|
| 222 |
class MemoryManager:
|
|
|
|
| 225 |
self.shared_memory: List[str] = []
|
| 226 |
|
| 227 |
def store(self, item: str) -> None:
|
| 228 |
+
"""Store a memory item and log an excerpt."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
self.shared_memory.append(item)
|
| 230 |
logging.info(f"[Memory Stored]: {item[:50]}...")
|
| 231 |
|
| 232 |
def retrieve(self, query: str, top_k: int = 3) -> List[str]:
|
| 233 |
+
"""Retrieve recent memory items containing the query text."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
query_lower = query.lower()
|
| 235 |
relevant = [item for item in self.shared_memory if query_lower in item.lower()]
|
| 236 |
if not relevant:
|
| 237 |
logging.info("[Memory Retrieval]: No relevant memories found.")
|
| 238 |
else:
|
| 239 |
logging.info(f"[Memory Retrieval]: Found {len(relevant)} relevant memories.")
|
| 240 |
+
return relevant[-top_k:]
|
| 241 |
|
|
|
|
| 242 |
global_memory_manager = MemoryManager()
|
| 243 |
|
| 244 |
+
# --- Unified Generation Function ---
|
| 245 |
+
def generate_response(model, tokenizer, prompt: str, max_tokens: int, temperature: float, top_p: float) -> str:
|
| 246 |
+
"""Generate a response for a given prompt."""
|
| 247 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
| 248 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 249 |
+
kwargs = dict(
|
| 250 |
+
input_ids=input_ids,
|
| 251 |
+
streamer=streamer,
|
| 252 |
+
max_new_tokens=max_tokens,
|
| 253 |
+
temperature=temperature,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
top_p=top_p,
|
| 255 |
+
do_sample=True,
|
| 256 |
)
|
| 257 |
+
thread = Thread(target=model.generate, kwargs=kwargs)
|
| 258 |
+
with torch.no_grad():
|
| 259 |
+
thread.start()
|
| 260 |
+
response = ""
|
| 261 |
try:
|
| 262 |
+
for text in streamer:
|
| 263 |
+
response += text
|
|
|
|
| 264 |
except Exception as e:
|
| 265 |
+
logging.error(f"Error during generation: {e}")
|
| 266 |
raise e
|
| 267 |
+
thread.join()
|
| 268 |
+
return response
|
| 269 |
|
| 270 |
+
# --- Multi-Round Agent Class ---
|
| 271 |
+
class MultiRoundAgent:
|
| 272 |
+
"""
|
| 273 |
+
Encapsulate the multi-round prompt chaining and response generation.
|
| 274 |
+
This class runs a 4-round pipeline based on the given preset.
|
| 275 |
+
"""
|
| 276 |
+
def __init__(self, model, tokenizer, prompt_templates: Dict[str, str], memory_manager: MemoryManager):
|
| 277 |
+
self.model = model
|
| 278 |
+
self.tokenizer = tokenizer
|
| 279 |
+
self.prompt_templates = prompt_templates
|
| 280 |
+
self.memory_manager = memory_manager
|
| 281 |
+
|
| 282 |
+
def run_pipeline(self, user_prompt: str, params: Dict, show_raw: bool = False) -> Generator[str, None, None]:
|
| 283 |
+
# Round 1: Brainstorming / Analysis
|
| 284 |
+
logging.info("--- Round 1 ---")
|
| 285 |
+
prompt_r1 = self.prompt_templates["brainstorm"].format(user_prompt=user_prompt)
|
| 286 |
+
r1 = generate_response(self.model, self.tokenizer, prompt_r1, params.get("max_new_tokens"), params.get("temp"), params.get("top_p"))
|
| 287 |
+
self.memory_manager.store(f"Round 1 Response: {r1}")
|
| 288 |
+
|
| 289 |
+
# Round 2: Secondary Generation (strategy/outline/code)
|
| 290 |
+
logging.info("--- Round 2 ---")
|
| 291 |
+
prompt_r2 = self.prompt_templates["round2"].format(brainstorm_response=r1, user_prompt=user_prompt)
|
| 292 |
+
r2 = generate_response(self.model, self.tokenizer, prompt_r2, params.get("max_new_tokens") + 100, params.get("temp"), params.get("top_p"))
|
| 293 |
+
self.memory_manager.store(f"Round 2 Response: {r2}")
|
| 294 |
+
|
| 295 |
+
# Round 3: Synthesis & Refinement (streaming updates)
|
| 296 |
+
logging.info("--- Round 3 ---")
|
| 297 |
+
prompt_r3 = self.prompt_templates["synthesis"].format(round2_response=r2)
|
| 298 |
+
input_ids_r3 = self.tokenizer.encode(prompt_r3, return_tensors="pt").to(self.model.device)
|
| 299 |
+
streamer_r3 = TextIteratorStreamer(self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 300 |
+
kwargs_r3 = dict(
|
| 301 |
+
input_ids=input_ids_r3,
|
| 302 |
+
streamer=streamer_r3,
|
| 303 |
+
max_new_tokens=params.get("max_new_tokens") // 2,
|
| 304 |
+
temperature=params.get("temp"),
|
| 305 |
+
top_p=params.get("top_p")
|
| 306 |
+
)
|
| 307 |
+
thread_r3 = Thread(target=self.model.generate, kwargs=kwargs_r3)
|
| 308 |
with torch.no_grad():
|
| 309 |
thread_r3.start()
|
| 310 |
+
r3 = ""
|
| 311 |
+
try:
|
| 312 |
+
for text in streamer_r3:
|
| 313 |
+
r3 += text
|
| 314 |
+
yield r3 # Yield progressive updates from Round 3
|
| 315 |
+
except Exception as e:
|
| 316 |
+
logging.error(f"Error during Round 3 streaming: {e}")
|
| 317 |
+
raise e
|
| 318 |
+
thread_r3.join()
|
| 319 |
+
self.memory_manager.store(f"Final Synthesis Response: {r3}")
|
| 320 |
+
|
| 321 |
+
# Round 4: Rationale / Final Output
|
| 322 |
+
logging.info("--- Round 4 ---")
|
| 323 |
+
prompt_r4 = self.prompt_templates["rationale"].format(final_response=r3)
|
| 324 |
+
r4 = generate_response(self.model, self.tokenizer, prompt_r4, 300, params.get("temp"), params.get("top_p"))
|
| 325 |
+
self.memory_manager.store(f"Round 4 Response: {r4}")
|
| 326 |
+
|
| 327 |
+
# Construct final output based on the show_raw flag.
|
| 328 |
+
if show_raw:
|
| 329 |
+
final_output = (
|
| 330 |
+
f"{r4}\n\n[Raw Outputs]\n"
|
| 331 |
+
f"Round 1:\n{r1}\n\n"
|
| 332 |
+
f"Round 2:\n{r2}\n\n"
|
| 333 |
+
f"Round 3:\n{r3}\n\n"
|
| 334 |
+
f"Round 4:\n{r4}\n"
|
| 335 |
+
)
|
| 336 |
+
else:
|
| 337 |
+
final_output = r4
|
| 338 |
|
| 339 |
+
yield final_output
|
| 340 |
|
| 341 |
+
# --- Swarm Agent Iterative Function ---
|
| 342 |
+
@spaces.GPU(duration=180) # Adjust duration as needed
|
| 343 |
+
def swarm_agent_iterative(user_prompt: str, temp: float, top_p: float, max_new_tokens: int, memory_top_k: int,
|
| 344 |
+
prompt_templates: Dict[str, str], domain: str, show_raw: bool) -> Generator[str, None, None]:
|
| 345 |
"""
|
| 346 |
+
Wraps the multi-round agent functionality. Depending on the detected domain,
|
| 347 |
+
it runs the 4-round pipeline.
|
| 348 |
+
"""
|
| 349 |
+
model, tokenizer = get_model_and_tokenizer()
|
| 350 |
+
agent = MultiRoundAgent(model, tokenizer, prompt_templates, global_memory_manager)
|
| 351 |
+
params = {"temp": temp, "top_p": top_p, "max_new_tokens": max_new_tokens}
|
| 352 |
+
return agent.run_pipeline(user_prompt, params, show_raw)
|
| 353 |
|
| 354 |
+
# --- Explanation Function for Additional Requests ---
|
| 355 |
+
def handle_explanation_request(user_prompt: str, history: List) -> str:
|
| 356 |
"""
|
| 357 |
+
Retrieve stored rationale and additional context from conversation history,
|
| 358 |
+
then generate an explanation.
|
| 359 |
+
"""
|
| 360 |
+
retrieved = global_memory_manager.retrieve("Round 4 Response:", top_k=3)
|
| 361 |
+
explanation_prompt = "Below are previous final outputs and related context from our conversation:\n"
|
| 362 |
+
if retrieved:
|
| 363 |
for item in retrieved:
|
| 364 |
explanation_prompt += f"- {item}\n"
|
| 365 |
+
else:
|
| 366 |
+
explanation_prompt += "No stored final output found.\n"
|
| 367 |
+
|
| 368 |
+
explanation_prompt += "\nRecent related exchanges:\n"
|
| 369 |
+
for chat in history:
|
| 370 |
+
if ("explain" in chat[0].lower()) or (chat[1] and "explain" in chat[1].lower()):
|
| 371 |
+
explanation_prompt += f"User: {chat[0]}\nAssistant: {chat[1]}\n"
|
| 372 |
+
|
| 373 |
+
explanation_prompt += "\nBased on the above context, please provide a detailed explanation of the creative choices."
|
| 374 |
model, tokenizer = get_model_and_tokenizer()
|
| 375 |
+
explanation = generate_response(model, tokenizer, explanation_prompt, 300, 0.7, 0.9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
return explanation
|
| 377 |
|
|
|
|
| 378 |
# --- Helper to Format History ---
|
| 379 |
def format_history(history: List) -> List[Dict[str, str]]:
|
| 380 |
"""
|
| 381 |
+
Convert history (list of [user, assistant] pairs) into a list of message dictionaries.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
"""
|
| 383 |
messages = []
|
| 384 |
for item in history:
|
|
|
|
| 385 |
if isinstance(item, (list, tuple)) and len(item) == 2:
|
| 386 |
user_msg, assistant_msg = item
|
| 387 |
messages.append({"role": "user", "content": user_msg})
|
|
|
|
| 391 |
messages.append(item)
|
| 392 |
return messages
|
| 393 |
|
|
|
|
| 394 |
# --- Gradio Chat Interface Function ---
|
| 395 |
def gradio_interface(message: str, history: List, param_state: Dict, prompt_state: Dict) -> Generator[List[Dict[str, str]], None, None]:
|
| 396 |
"""
|
| 397 |
+
Called by Gradio's ChatInterface. Uses current generation parameters and preset prompt templates.
|
| 398 |
+
If the user asks for an explanation, routes the request accordingly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
"""
|
| 400 |
+
if "explain" in message.lower():
|
| 401 |
+
explanation = handle_explanation_request(message, history)
|
|
|
|
| 402 |
history = history + [[message, explanation]]
|
| 403 |
yield format_history(history)
|
| 404 |
return
|
|
|
|
| 408 |
top_p = float(param_state.get("top_p", 0.9))
|
| 409 |
max_new_tokens = int(param_state.get("max_new_tokens", 300))
|
| 410 |
memory_top_k = int(param_state.get("memory_top_k", 2))
|
| 411 |
+
show_raw = bool(param_state.get("show_raw_output", False))
|
| 412 |
except Exception as e:
|
| 413 |
logging.error(f"Parameter conversion error: {e}")
|
| 414 |
+
temp, top_p, max_new_tokens, memory_top_k, show_raw = 0.5, 0.9, 300, 2, False
|
| 415 |
|
| 416 |
+
domain = detect_domain(message)
|
| 417 |
+
# Get the prompt templates for the detected domain; default to coding if not set.
|
| 418 |
+
prompt_templates = prompt_state.get(domain, default_prompts.get(domain, default_prompts["coding"]))
|
| 419 |
|
|
|
|
| 420 |
history = history + [[message, ""]]
|
|
|
|
|
|
|
| 421 |
for partial_response in swarm_agent_iterative(
|
| 422 |
user_prompt=message,
|
| 423 |
temp=temp,
|
| 424 |
top_p=top_p,
|
| 425 |
max_new_tokens=max_new_tokens,
|
| 426 |
memory_top_k=memory_top_k,
|
| 427 |
+
prompt_templates=prompt_templates,
|
| 428 |
+
domain=domain,
|
| 429 |
+
show_raw=show_raw
|
| 430 |
):
|
|
|
|
| 431 |
history[-1][1] = partial_response
|
| 432 |
yield format_history(history)
|
| 433 |
|
|
|
|
| 434 |
# --- UI Settings & Styling ---
|
| 435 |
ui_description = '''
|
| 436 |
<div>
|
| 437 |
<h1 style="text-align: center;">DeepSeek Agent Swarm Chat</h1>
|
| 438 |
<p style="text-align: center;">
|
| 439 |
+
Multi-round agent with 4-round prompt chaining for three presets:
|
| 440 |
+
<br>- Coding
|
| 441 |
+
<br>- Math
|
| 442 |
+
<br>- Writing
|
| 443 |
</p>
|
| 444 |
</div>
|
| 445 |
'''
|
|
|
|
| 469 |
}
|
| 470 |
"""
|
| 471 |
|
|
|
|
| 472 |
# --- Gradio UI ---
|
| 473 |
with gr.Blocks(css=css, title="DeepSeek Agent Swarm Chat") as demo:
|
| 474 |
gr.Markdown(ui_description)
|
| 475 |
+
# Hidden states for parameters and prompt configurations.
|
|
|
|
| 476 |
param_state = gr.State({
|
| 477 |
"temperature": 0.5,
|
| 478 |
"top_p": 0.9,
|
| 479 |
"max_new_tokens": 300,
|
| 480 |
"memory_top_k": 2,
|
| 481 |
+
"show_raw_output": False, # New parameter for raw output
|
| 482 |
})
|
| 483 |
prompt_state = gr.State({
|
| 484 |
+
"coding": default_prompts["coding"],
|
| 485 |
+
"math": default_prompts["math"],
|
| 486 |
+
"writing": default_prompts["writing"],
|
| 487 |
})
|
| 488 |
|
|
|
|
| 489 |
with gr.Tabs():
|
|
|
|
| 490 |
with gr.Tab("Chat"):
|
| 491 |
chatbot = gr.Chatbot(height=450, placeholder=ui_placeholder, label="Agent Swarm Output", type="messages")
|
| 492 |
gr.ChatInterface(
|
|
|
|
| 495 |
additional_inputs=[param_state, prompt_state],
|
| 496 |
examples=[
|
| 497 |
['How can we build a robust web service that scales efficiently under load?'],
|
| 498 |
+
['Solve the integral of x^2 from 0 to 1.'],
|
| 499 |
+
['Write a short story about a mysterious writer in a busy city.'],
|
| 500 |
+
['Create a pun-filled birthday message with a coding twist.']
|
|
|
|
| 501 |
],
|
| 502 |
cache_examples=False,
|
| 503 |
type="messages",
|
| 504 |
)
|
|
|
|
|
|
|
| 505 |
with gr.Tab("Parameters"):
|
| 506 |
gr.Markdown("### Generation Parameters")
|
| 507 |
temp_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
|
| 508 |
top_p_slider = gr.Slider(minimum=0.01, maximum=1.0, step=0.05, value=0.9, label="Top P")
|
| 509 |
max_tokens_num = gr.Number(value=300, label="Max new tokens", precision=0)
|
| 510 |
memory_topk_slider = gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Memory Retrieval Top K")
|
| 511 |
+
show_raw_checkbox = gr.Checkbox(value=False, label="Show Raw Output") # New checkbox for raw output
|
| 512 |
save_params_btn = gr.Button("Save Parameters")
|
| 513 |
save_params_btn.click(
|
| 514 |
+
lambda t, p, m, k, s: {
|
| 515 |
+
"temperature": t,
|
| 516 |
+
"top_p": p,
|
| 517 |
+
"max_new_tokens": m,
|
| 518 |
+
"memory_top_k": k,
|
| 519 |
+
"show_raw_output": s
|
| 520 |
+
},
|
| 521 |
+
inputs=[temp_slider, top_p_slider, max_tokens_num, memory_topk_slider, show_raw_checkbox],
|
| 522 |
outputs=param_state,
|
| 523 |
)
|
|
|
|
|
|
|
| 524 |
with gr.Tab("Prompt Config"):
|
| 525 |
+
gr.Markdown("### Configure Prompt Templates for Each Preset")
|
| 526 |
+
with gr.Tabs():
|
| 527 |
+
with gr.Tab("Coding"):
|
| 528 |
+
prompt_brainstorm_box_code = gr.Textbox(
|
| 529 |
+
value=default_prompts["coding"]["brainstorm"],
|
| 530 |
+
label="Brainstorm Prompt (Coding)",
|
| 531 |
+
lines=8,
|
| 532 |
+
)
|
| 533 |
+
prompt_round2_box_code = gr.Textbox(
|
| 534 |
+
value=default_prompts["coding"]["round2"],
|
| 535 |
+
label="Round 2 Prompt (Coding)",
|
| 536 |
+
lines=8,
|
| 537 |
+
)
|
| 538 |
+
prompt_synthesis_box_code = gr.Textbox(
|
| 539 |
+
value=default_prompts["coding"]["synthesis"],
|
| 540 |
+
label="Synthesis Prompt (Coding)",
|
| 541 |
+
lines=8,
|
| 542 |
+
)
|
| 543 |
+
prompt_rationale_box_code = gr.Textbox(
|
| 544 |
+
value=default_prompts["coding"]["rationale"],
|
| 545 |
+
label="Rationale Prompt (Coding)",
|
| 546 |
+
lines=8,
|
| 547 |
+
)
|
| 548 |
+
with gr.Tab("Math"):
|
| 549 |
+
prompt_brainstorm_box_math = gr.Textbox(
|
| 550 |
+
value=default_prompts["math"]["brainstorm"],
|
| 551 |
+
label="Brainstorm Prompt (Math)",
|
| 552 |
+
lines=8,
|
| 553 |
+
)
|
| 554 |
+
prompt_round2_box_math = gr.Textbox(
|
| 555 |
+
value=default_prompts["math"]["round2"],
|
| 556 |
+
label="Round 2 Prompt (Math)",
|
| 557 |
+
lines=8,
|
| 558 |
+
)
|
| 559 |
+
prompt_synthesis_box_math = gr.Textbox(
|
| 560 |
+
value=default_prompts["math"]["synthesis"],
|
| 561 |
+
label="Synthesis Prompt (Math)",
|
| 562 |
+
lines=8,
|
| 563 |
+
)
|
| 564 |
+
prompt_rationale_box_math = gr.Textbox(
|
| 565 |
+
value=default_prompts["math"]["rationale"],
|
| 566 |
+
label="Rationale Prompt (Math)",
|
| 567 |
+
lines=8,
|
| 568 |
+
)
|
| 569 |
+
with gr.Tab("Writing"):
|
| 570 |
+
prompt_brainstorm_box_writing = gr.Textbox(
|
| 571 |
+
value=default_prompts["writing"]["brainstorm"],
|
| 572 |
+
label="Brainstorm Prompt (Writing)",
|
| 573 |
+
lines=8,
|
| 574 |
+
)
|
| 575 |
+
prompt_round2_box_writing = gr.Textbox(
|
| 576 |
+
value=default_prompts["writing"]["round2"],
|
| 577 |
+
label="Round 2 Prompt (Writing)",
|
| 578 |
+
lines=8,
|
| 579 |
+
)
|
| 580 |
+
prompt_synthesis_box_writing = gr.Textbox(
|
| 581 |
+
value=default_prompts["writing"]["synthesis"],
|
| 582 |
+
label="Synthesis Prompt (Writing)",
|
| 583 |
+
lines=8,
|
| 584 |
+
)
|
| 585 |
+
prompt_rationale_box_writing = gr.Textbox(
|
| 586 |
+
value=default_prompts["writing"]["rationale"],
|
| 587 |
+
label="Rationale Prompt (Writing)",
|
| 588 |
+
lines=8,
|
| 589 |
+
)
|
| 590 |
save_prompts_btn = gr.Button("Save Prompts")
|
| 591 |
+
def save_prompts(code_brain, code_r2, code_syn, code_rat, math_brain, math_r2, math_syn, math_rat, writing_brain, writing_r2, writing_syn, writing_rat):
|
| 592 |
+
return {
|
| 593 |
+
"coding": {
|
| 594 |
+
"brainstorm": code_brain,
|
| 595 |
+
"round2": code_r2,
|
| 596 |
+
"synthesis": code_syn,
|
| 597 |
+
"rationale": code_rat,
|
| 598 |
+
},
|
| 599 |
+
"math": {
|
| 600 |
+
"brainstorm": math_brain,
|
| 601 |
+
"round2": math_r2,
|
| 602 |
+
"synthesis": math_syn,
|
| 603 |
+
"rationale": math_rat,
|
| 604 |
+
},
|
| 605 |
+
"writing": {
|
| 606 |
+
"brainstorm": writing_brain,
|
| 607 |
+
"round2": writing_r2,
|
| 608 |
+
"synthesis": writing_syn,
|
| 609 |
+
"rationale": writing_rat,
|
| 610 |
+
}
|
| 611 |
+
}
|
| 612 |
save_prompts_btn.click(
|
| 613 |
+
save_prompts,
|
| 614 |
+
inputs=[prompt_brainstorm_box_code, prompt_round2_box_code, prompt_synthesis_box_code, prompt_rationale_box_code,
|
| 615 |
+
prompt_brainstorm_box_math, prompt_round2_box_math, prompt_synthesis_box_math, prompt_rationale_box_math,
|
| 616 |
+
prompt_brainstorm_box_writing, prompt_round2_box_writing, prompt_synthesis_box_writing, prompt_rationale_box_writing],
|
|
|
|
|
|
|
| 617 |
outputs=prompt_state,
|
| 618 |
)
|
|
|
|
| 619 |
gr.Markdown(ui_license)
|
| 620 |
|
| 621 |
if __name__ == "__main__":
|
| 622 |
+
demo.launch()
|