Update app.py
Browse files
app.py
CHANGED
|
@@ -42,7 +42,7 @@ def remove_repeated_phrases(text):
|
|
| 42 |
return " ".join(cleaned_sentences)
|
| 43 |
|
| 44 |
def remove_punctuation(text):
|
| 45 |
-
return re.sub(r'[^\w\s]', '', text)
|
| 46 |
|
| 47 |
def transcribe_audio(audio_path):
|
| 48 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
@@ -78,9 +78,21 @@ def translate(text):
|
|
| 78 |
translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 79 |
return " ".join(translations)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
# Streamlit UI
|
| 82 |
st.set_page_config(page_title="Cantonese Speech Processing", layout="wide")
|
| 83 |
-
st.title("π€ Cantonese Audio Transcription &
|
| 84 |
st.write("Upload an audio file to transcribe, translate, and analyze quality.")
|
| 85 |
|
| 86 |
uploaded_file = st.file_uploader("Upload your audio file (WAV format)", type=["wav"])
|
|
@@ -98,4 +110,8 @@ if uploaded_file is not None:
|
|
| 98 |
st.subheader("π Translation")
|
| 99 |
st.text_area("Translated Text", translated_text, height=150)
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
st.success("Processing complete!")
|
|
|
|
| 42 |
return " ".join(cleaned_sentences)
|
| 43 |
|
| 44 |
def remove_punctuation(text):
|
| 45 |
+
return re.sub(r'[^\w\s]', '', text)
|
| 46 |
|
| 47 |
def transcribe_audio(audio_path):
|
| 48 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
|
|
| 78 |
translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 79 |
return " ".join(translations)
|
| 80 |
|
| 81 |
+
# Load quality rating model
|
| 82 |
+
rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel_dianping-chinese")
|
| 83 |
+
|
| 84 |
+
def rate_quality(text):
|
| 85 |
+
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
| 86 |
+
results = []
|
| 87 |
+
for chunk in chunks:
|
| 88 |
+
result = rating_pipe(chunk)[0]
|
| 89 |
+
label_map = {"LABEL_0": "Poor", "LABEL_1": "Neutral", "LABEL_2": "Good"}
|
| 90 |
+
results.append(label_map.get(result["label"], "Unknown"))
|
| 91 |
+
return max(set(results), key=results.count)
|
| 92 |
+
|
| 93 |
# Streamlit UI
|
| 94 |
st.set_page_config(page_title="Cantonese Speech Processing", layout="wide")
|
| 95 |
+
st.title("π€ Cantonese Audio Transcription, Translation & Quality Rating")
|
| 96 |
st.write("Upload an audio file to transcribe, translate, and analyze quality.")
|
| 97 |
|
| 98 |
uploaded_file = st.file_uploader("Upload your audio file (WAV format)", type=["wav"])
|
|
|
|
| 110 |
st.subheader("π Translation")
|
| 111 |
st.text_area("Translated Text", translated_text, height=150)
|
| 112 |
|
| 113 |
+
quality_rating = rate_quality(translated_text)
|
| 114 |
+
st.subheader("β Quality Rating")
|
| 115 |
+
st.write(f"**Rating:** {quality_rating}")
|
| 116 |
+
|
| 117 |
st.success("Processing complete!")
|