Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ from transformers import ViTImageProcessor, AutoModelForImageClassification
|
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
from io import BytesIO
|
| 6 |
-
import json
|
| 7 |
|
| 8 |
# Load the model and processor
|
| 9 |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
|
@@ -25,57 +24,17 @@ def predict_image(image):
|
|
| 25 |
except Exception as e:
|
| 26 |
return str(e)
|
| 27 |
|
| 28 |
-
# Streamlit app
|
| 29 |
st.title("NSFW Image Classifier")
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# Load image from URL
|
| 43 |
-
response = requests.get(image_url)
|
| 44 |
-
image = Image.open(BytesIO(response.content))
|
| 45 |
-
|
| 46 |
-
# Predict and return result as JSON
|
| 47 |
-
prediction = predict_image(image)
|
| 48 |
-
return json.dumps({'predicted_class': prediction})
|
| 49 |
-
except Exception as e:
|
| 50 |
-
return json.dumps({'error': str(e)}), 500 # Internal Server Error
|
| 51 |
-
else:
|
| 52 |
-
return json.dumps({'error': 'Missing "image_url" in request body'}), 400 # Bad Request
|
| 53 |
-
else:
|
| 54 |
-
return json.dumps({'error': 'Only POST requests are allowed'}), 405 # Method Not Allowed
|
| 55 |
-
|
| 56 |
-
st.experimental_next_router(api_endpoint) # Register the API endpoint
|
| 57 |
-
|
| 58 |
-
if image_url_ui:
|
| 59 |
-
try:
|
| 60 |
-
# Load image from UI input (if URL is provided)
|
| 61 |
-
response = requests.get(image_url_ui)
|
| 62 |
-
image = Image.open(BytesIO(response.content))
|
| 63 |
-
st.image(image, caption='Image from URL', use_column_width=True)
|
| 64 |
-
st.write("")
|
| 65 |
-
st.write("Classifying...")
|
| 66 |
-
|
| 67 |
-
# Predict and display result (for UI)
|
| 68 |
-
prediction = predict_image(image)
|
| 69 |
-
st.write(f"Predicted Class: {prediction}")
|
| 70 |
-
except Exception as e:
|
| 71 |
-
st.write(f"Error: {e}")
|
| 72 |
-
|
| 73 |
-
# Display API endpoint information
|
| 74 |
-
space_url = st.session_state.get('huggingface_space_url') # Assuming it's available
|
| 75 |
-
if space_url:
|
| 76 |
-
api_endpoint_url = f"{space_url}/api/classify" # Construct the URL based on Space URL
|
| 77 |
-
st.write(f"You can also use this API endpoint to classify images:")
|
| 78 |
-
st.write(f"```curl")
|
| 79 |
-
st.write(f"curl -X POST -H 'Content-Type: application/json' -d '{{ \"image_url\": \"https://example.jpg\" }}' {api_endpoint_url}")
|
| 80 |
-
st.write(f"```")
|
| 81 |
-
st.write(f"This will return the predicted class in JSON format.")
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
from io import BytesIO
|
|
|
|
| 6 |
|
| 7 |
# Load the model and processor
|
| 8 |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
|
|
|
| 24 |
except Exception as e:
|
| 25 |
return str(e)
|
| 26 |
|
| 27 |
+
# Streamlit app
|
| 28 |
st.title("NSFW Image Classifier")
|
| 29 |
|
| 30 |
+
# Upload image file
|
| 31 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 32 |
+
if uploaded_file is not None:
|
| 33 |
+
image = Image.open(uploaded_file)
|
| 34 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
| 35 |
+
st.write("")
|
| 36 |
+
st.write("Classifying...")
|
| 37 |
+
|
| 38 |
+
# Predict and display result
|
| 39 |
+
prediction = predict_image(image)
|
| 40 |
+
st.write(f"Predicted Class: {prediction}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|