Spaces:
Runtime error
Runtime error
wzhouxiff
commited on
Commit
·
979cf8b
1
Parent(s):
c24e97b
spaces
Browse files- app.py +50 -2
- objctrl_2_5d/utils/ui_utils.py +0 -43
app.py
CHANGED
|
@@ -6,8 +6,10 @@ import torch
|
|
| 6 |
from gradio_image_prompter import ImagePrompter
|
| 7 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 8 |
from omegaconf import OmegaConf
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose,
|
| 11 |
|
| 12 |
|
| 13 |
from cameractrl.inference import get_pipeline
|
|
@@ -114,6 +116,51 @@ pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], mode
|
|
| 114 |
# d_model_NK = None
|
| 115 |
# pipeline = None
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
# -------------- UI definition --------------
|
| 119 |
with gr.Blocks() as demo:
|
|
@@ -270,7 +317,8 @@ with gr.Blocks() as demo:
|
|
| 270 |
)
|
| 271 |
|
| 272 |
select_button.click(
|
| 273 |
-
run_segment(segmentor),
|
|
|
|
| 274 |
[canvas, original_image, mask_logits],
|
| 275 |
[mask, mask_output, masked_original_image, mask_logits]
|
| 276 |
)
|
|
|
|
| 6 |
from gradio_image_prompter import ImagePrompter
|
| 7 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 8 |
from omegaconf import OmegaConf
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import numpy as np
|
| 11 |
|
| 12 |
+
from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, run_depth, get_points, undo_points, mask_image
|
| 13 |
|
| 14 |
|
| 15 |
from cameractrl.inference import get_pipeline
|
|
|
|
| 116 |
# d_model_NK = None
|
| 117 |
# pipeline = None
|
| 118 |
|
| 119 |
+
### run the demo ##
|
| 120 |
+
@spaces.GPU(duration=50)
|
| 121 |
+
# def run_segment(segmentor):
|
| 122 |
+
def segment(canvas, image, logits):
|
| 123 |
+
if logits is not None:
|
| 124 |
+
logits *= 32.0
|
| 125 |
+
_, points = get_subject_points(canvas)
|
| 126 |
+
image = np.array(image)
|
| 127 |
+
|
| 128 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 129 |
+
segmentor.set_image(image)
|
| 130 |
+
input_points = []
|
| 131 |
+
input_boxes = []
|
| 132 |
+
for p in points:
|
| 133 |
+
[x1, y1, _, x2, y2, _] = p
|
| 134 |
+
if x2==0 and y2==0:
|
| 135 |
+
input_points.append([x1, y1])
|
| 136 |
+
else:
|
| 137 |
+
input_boxes.append([x1, y1, x2, y2])
|
| 138 |
+
if len(input_points) == 0:
|
| 139 |
+
input_points = None
|
| 140 |
+
input_labels = None
|
| 141 |
+
else:
|
| 142 |
+
input_points = np.array(input_points)
|
| 143 |
+
input_labels = np.ones(len(input_points))
|
| 144 |
+
if len(input_boxes) == 0:
|
| 145 |
+
input_boxes = None
|
| 146 |
+
else:
|
| 147 |
+
input_boxes = np.array(input_boxes)
|
| 148 |
+
masks, _, logits = segmentor.predict(
|
| 149 |
+
point_coords=input_points,
|
| 150 |
+
point_labels=input_labels,
|
| 151 |
+
box=input_boxes,
|
| 152 |
+
multimask_output=False,
|
| 153 |
+
return_logits=True,
|
| 154 |
+
mask_input=logits,
|
| 155 |
+
)
|
| 156 |
+
mask = masks > 0
|
| 157 |
+
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
|
| 158 |
+
masked_img = Image.fromarray(masked_img)
|
| 159 |
+
|
| 160 |
+
return mask[0], masked_img, masked_img, logits / 32.0
|
| 161 |
+
|
| 162 |
+
# return segment
|
| 163 |
+
|
| 164 |
|
| 165 |
# -------------- UI definition --------------
|
| 166 |
with gr.Blocks() as demo:
|
|
|
|
| 317 |
)
|
| 318 |
|
| 319 |
select_button.click(
|
| 320 |
+
# run_segment(segmentor),
|
| 321 |
+
segment,
|
| 322 |
[canvas, original_image, mask_logits],
|
| 323 |
[mask, mask_output, masked_original_image, mask_logits]
|
| 324 |
)
|
objctrl_2_5d/utils/ui_utils.py
CHANGED
|
@@ -52,49 +52,6 @@ def process_image(raw_image):
|
|
| 52 |
def get_subject_points(canvas):
|
| 53 |
return canvas["image"], canvas["points"]
|
| 54 |
|
| 55 |
-
@spaces.GPU(duration=50)
|
| 56 |
-
def run_segment(segmentor):
|
| 57 |
-
def segment(canvas, image, logits):
|
| 58 |
-
if logits is not None:
|
| 59 |
-
logits *= 32.0
|
| 60 |
-
_, points = get_subject_points(canvas)
|
| 61 |
-
image = np.array(image)
|
| 62 |
-
|
| 63 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 64 |
-
segmentor.set_image(image)
|
| 65 |
-
input_points = []
|
| 66 |
-
input_boxes = []
|
| 67 |
-
for p in points:
|
| 68 |
-
[x1, y1, _, x2, y2, _] = p
|
| 69 |
-
if x2==0 and y2==0:
|
| 70 |
-
input_points.append([x1, y1])
|
| 71 |
-
else:
|
| 72 |
-
input_boxes.append([x1, y1, x2, y2])
|
| 73 |
-
if len(input_points) == 0:
|
| 74 |
-
input_points = None
|
| 75 |
-
input_labels = None
|
| 76 |
-
else:
|
| 77 |
-
input_points = np.array(input_points)
|
| 78 |
-
input_labels = np.ones(len(input_points))
|
| 79 |
-
if len(input_boxes) == 0:
|
| 80 |
-
input_boxes = None
|
| 81 |
-
else:
|
| 82 |
-
input_boxes = np.array(input_boxes)
|
| 83 |
-
masks, _, logits = segmentor.predict(
|
| 84 |
-
point_coords=input_points,
|
| 85 |
-
point_labels=input_labels,
|
| 86 |
-
box=input_boxes,
|
| 87 |
-
multimask_output=False,
|
| 88 |
-
return_logits=True,
|
| 89 |
-
mask_input=logits,
|
| 90 |
-
)
|
| 91 |
-
mask = masks > 0
|
| 92 |
-
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
|
| 93 |
-
masked_img = Image.fromarray(masked_img)
|
| 94 |
-
|
| 95 |
-
return mask[0], masked_img, masked_img, logits / 32.0
|
| 96 |
-
|
| 97 |
-
return segment
|
| 98 |
|
| 99 |
def mask_image(image,
|
| 100 |
mask,
|
|
|
|
| 52 |
def get_subject_points(canvas):
|
| 53 |
return canvas["image"], canvas["points"]
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
def mask_image(image,
|
| 57 |
mask,
|