Spaces:
Running
on
Zero
Running
on
Zero
| """This file contains some base class implementation for EMA. | |
| This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
| All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
| Reference: | |
| https://github.com/huggingface/open-muse/blob/64e1afe033717d795866ab8204484705cd4dc3f7/muse/modeling_ema.py#L8 | |
| """ | |
| import copy | |
| from typing import Any, Iterable, Optional, Union | |
| import torch | |
| class EMAModel: | |
| """Exponential Moving Average of models weights.""" | |
| def __init__( | |
| self, | |
| parameters: Iterable[torch.nn.Parameter], | |
| decay: float = 0.9999, | |
| min_decay: float = 0.0, | |
| update_after_step: int = 0, | |
| update_every: int = 1, | |
| current_step: int = 0, | |
| use_ema_warmup: bool = False, | |
| inv_gamma: Union[float, int] = 1.0, | |
| power: Union[float, int] = 2 / 3, | |
| model_cls: Optional[Any] = None, | |
| **model_config_kwargs | |
| ): | |
| """ | |
| Args: | |
| parameters (Iterable[torch.nn.Parameter]): The parameters to track. | |
| decay (float): The decay factor for the exponential moving average. | |
| min_decay (float): The minimum decay factor for the exponential moving average. | |
| update_after_step (int): The number of steps to wait before starting to update the EMA weights. | |
| update_every (int): The number of steps between each EMA update. | |
| current_step (int): The current training step. | |
| use_ema_warmup (bool): Whether to use EMA warmup. | |
| inv_gamma (float): | |
| Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True. | |
| power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True. | |
| notes on EMA Warmup: | |
| If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan | |
| to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), | |
| gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 | |
| at 215.4k steps). | |
| """ | |
| parameters = list(parameters) | |
| self.shadow_params = [p.clone().detach() for p in parameters] | |
| self.temp_stored_params = None | |
| self.decay = decay | |
| self.min_decay = min_decay | |
| self.update_after_step = update_after_step | |
| self.update_every = update_every | |
| self.use_ema_warmup = use_ema_warmup | |
| self.inv_gamma = inv_gamma | |
| self.power = power | |
| self.optimization_step = current_step | |
| self.cur_decay_value = None # set in `step()` | |
| self.model_cls = model_cls | |
| self.model_config_kwargs = model_config_kwargs | |
| def from_pretrained(cls, checkpoint, model_cls, **model_config_kwargs) -> "EMAModel": | |
| model = model_cls(**model_config_kwargs) | |
| model.load_pretrained_weight(checkpoint) | |
| ema_model = cls(model.parameters(), model_cls=model_cls, **model_config_kwargs) | |
| return ema_model | |
| def save_pretrained(self, path): | |
| if self.model_cls is None: | |
| raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.") | |
| if self.model_config_kwargs is None: | |
| raise ValueError("`save_pretrained` can only be used if `model_config_kwargs` was defined at __init__.") | |
| model = self.model_cls(**self.model_config_kwargs) | |
| self.copy_to(model.parameters()) | |
| model.save_pretrained_weight(path) | |
| def set_step(self, optimization_step: int): | |
| self.optimization_step = optimization_step | |
| def get_decay(self, optimization_step: int) -> float: | |
| """Computes the decay factor for the exponential moving average.""" | |
| step = max(0, optimization_step - self.update_after_step - 1) | |
| if step <= 0: | |
| return 0.0 | |
| if self.use_ema_warmup: | |
| cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power | |
| else: | |
| cur_decay_value = (1 + step) / (10 + step) | |
| cur_decay_value = min(cur_decay_value, self.decay) | |
| # Make sure decay is not smaller than min_decay. | |
| cur_decay_value = max(cur_decay_value, self.min_decay) | |
| return cur_decay_value | |
| def step(self, parameters: Iterable[torch.nn.Parameter]): | |
| parameters = list(parameters) | |
| self.optimization_step += 1 | |
| if (self.optimization_step - 1) % self.update_every != 0: | |
| return | |
| # Compute the decay factor for the exponential moving average. | |
| decay = self.get_decay(self.optimization_step) | |
| self.cur_decay_value = decay | |
| one_minus_decay = 1 - decay | |
| for s_param, param in zip(self.shadow_params, parameters): | |
| if param.requires_grad: | |
| s_param.sub_(one_minus_decay * (s_param - param)) | |
| else: | |
| s_param.copy_(param) | |
| def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: | |
| """Copies current averaged parameters into given collection of parameters. | |
| Args: | |
| parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
| updated with the stored moving averages. If `None`, the parameters with which this | |
| `ExponentialMovingAverage` was initialized will be used. | |
| """ | |
| parameters = list(parameters) | |
| for s_param, param in zip(self.shadow_params, parameters): | |
| param.data.copy_(s_param.to(param.device).data) | |
| def to(self, device=None, dtype=None) -> None: | |
| r"""Moves internal buffers of the ExponentialMovingAverage to `device`. | |
| Args: | |
| device: like `device` argument to `torch.Tensor.to` | |
| """ | |
| # .to() on the tensors handles None correctly | |
| self.shadow_params = [ | |
| p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) | |
| for p in self.shadow_params | |
| ] | |
| def state_dict(self) -> dict: | |
| r"""Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during | |
| checkpointing to save the ema state dict. | |
| """ | |
| # Following PyTorch conventions, references to tensors are returned: | |
| # "returns a reference to the state and not its copy!" - | |
| # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict | |
| return { | |
| "decay": self.decay, | |
| "min_decay": self.min_decay, | |
| "optimization_step": self.optimization_step, | |
| "update_after_step": self.update_after_step, | |
| "use_ema_warmup": self.use_ema_warmup, | |
| "inv_gamma": self.inv_gamma, | |
| "power": self.power, | |
| "shadow_params": self.shadow_params, | |
| } | |
| def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: | |
| r""" | |
| Args: | |
| Save the current parameters for restoring later. | |
| parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
| temporarily stored. | |
| """ | |
| self.temp_stored_params = [param.detach().cpu().clone() for param in parameters] | |
| def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: | |
| r"""Restores the parameters stored with the `store` method. Useful to validate | |
| the model with EMA parameters without affecting the original optimization process. | |
| Store the parameters before the `copy_to()` method. After validation (or | |
| model saving), use this to restore the former parameters. | |
| Args: | |
| parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
| updated with the stored parameters. If `None`, the parameters with which this | |
| `ExponentialMovingAverage` was initialized will be used. | |
| """ | |
| if self.temp_stored_params is None: | |
| raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights to `restore()`") | |
| for c_param, param in zip(self.temp_stored_params, parameters): | |
| param.data.copy_(c_param.data) | |
| # Better memory-wise. | |
| self.temp_stored_params = None | |
| def load_state_dict(self, state_dict: dict) -> None: | |
| r"""Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the | |
| ema state dict. | |
| Args: | |
| state_dict (dict): EMA state. Should be an object returned | |
| from a call to :meth:`state_dict`. | |
| """ | |
| # Deepcopy, to be consistent with module API | |
| state_dict = copy.deepcopy(state_dict) | |
| self.decay = state_dict.get("decay", self.decay) | |
| if self.decay < 0.0 or self.decay > 1.0: | |
| raise ValueError("Decay must be between 0 and 1") | |
| self.min_decay = state_dict.get("min_decay", self.min_decay) | |
| if not isinstance(self.min_decay, float): | |
| raise ValueError("Invalid min_decay") | |
| self.optimization_step = state_dict.get("optimization_step", self.optimization_step) | |
| if not isinstance(self.optimization_step, int): | |
| raise ValueError("Invalid optimization_step") | |
| self.update_after_step = state_dict.get("update_after_step", self.update_after_step) | |
| if not isinstance(self.update_after_step, int): | |
| raise ValueError("Invalid update_after_step") | |
| self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup) | |
| if not isinstance(self.use_ema_warmup, bool): | |
| raise ValueError("Invalid use_ema_warmup") | |
| self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma) | |
| if not isinstance(self.inv_gamma, (float, int)): | |
| raise ValueError("Invalid inv_gamma") | |
| self.power = state_dict.get("power", self.power) | |
| if not isinstance(self.power, (float, int)): | |
| raise ValueError("Invalid power") | |
| shadow_params = state_dict.get("shadow_params", None) | |
| if shadow_params is not None: | |
| self.shadow_params = shadow_params | |
| if not isinstance(self.shadow_params, list): | |
| raise ValueError("shadow_params must be a list") | |
| if not all(isinstance(p, torch.Tensor) for p in self.shadow_params): | |
| raise ValueError("shadow_params must all be Tensors") |