Commit
·
d8c2d8e
1
Parent(s):
bc22eb1
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from presidio_anonymizer import AnonymizerEngine
|
| 6 |
+
from presidio_analyzer import AnalyzerEngine
|
| 7 |
+
from presidio_anonymizer.entities import RecognizerResult, OperatorConfig
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Initialize the engine:
|
| 12 |
+
analyzer = AnalyzerEngine()
|
| 13 |
+
anonymizer = AnonymizerEngine()
|
| 14 |
+
|
| 15 |
+
# Create pipeline
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER-uncased")
|
| 17 |
+
tokenizer.add_tokens('<person>')
|
| 18 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER-uncased")
|
| 19 |
+
pipe = pipeline(model=model, tokenizer=tokenizer, task='ner')
|
| 20 |
+
|
| 21 |
+
# https://microsoft.github.io/presidio/supported_entities/
|
| 22 |
+
ENT_TYPES = [
|
| 23 |
+
# 'PERSON',
|
| 24 |
+
'CREDIT_CARD',
|
| 25 |
+
'EMAIL_ADDRESS',
|
| 26 |
+
'IP_ADDRESS',
|
| 27 |
+
'PHONE_NUMBER'
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
def mask_names_hf(text):
|
| 31 |
+
# Tokenize inputs
|
| 32 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True)
|
| 33 |
+
tokens = inputs.tokens()
|
| 34 |
+
|
| 35 |
+
# Make inferences
|
| 36 |
+
outputs = model(**inputs).logits
|
| 37 |
+
predictions = torch.argmax(outputs, dim=2)
|
| 38 |
+
|
| 39 |
+
# Replace tokens that are people with <PERSON>
|
| 40 |
+
words = []
|
| 41 |
+
for token, prediction in zip(tokens, predictions[0].numpy()):
|
| 42 |
+
prediction = model.config.id2label[prediction]
|
| 43 |
+
if prediction not in ('I-PER', 'B-PER'):
|
| 44 |
+
words.append(token)
|
| 45 |
+
elif prediction == 'B-PER':
|
| 46 |
+
if words[-1] != '<PERSON>':
|
| 47 |
+
words.append('<PERSON>')
|
| 48 |
+
else:
|
| 49 |
+
pass
|
| 50 |
+
# Convert those tokens to a string
|
| 51 |
+
return tokenizer.convert_tokens_to_string(words[1:-1])
|
| 52 |
+
|
| 53 |
+
def anonymize(text, min_len=3):
|
| 54 |
+
|
| 55 |
+
# Find and replace other stuff (Presidio NER)
|
| 56 |
+
ents = analyzer.analyze(text, language='en', entities=ENT_TYPES)
|
| 57 |
+
results = anonymizer.anonymize(text, analyzer_results=ents)
|
| 58 |
+
t = results.text
|
| 59 |
+
|
| 60 |
+
# Find and replace names (HF NER)
|
| 61 |
+
t = mask_names_hf(t)
|
| 62 |
+
|
| 63 |
+
pats = re.findall('<.+?>', t)
|
| 64 |
+
for p in pats:
|
| 65 |
+
t = t.replace(p, p.upper().replace(' ', ''))
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
t = t.replace('<PERSON><PERSON>', '<PERSON>')
|
| 69 |
+
return t
|
| 70 |
+
|
| 71 |
+
title = "Personal Info Remover"
|
| 72 |
+
description = """Personal Info Remover"""
|
| 73 |
+
|
| 74 |
+
gr.Interface(
|
| 75 |
+
anonymize,
|
| 76 |
+
inputs='text',
|
| 77 |
+
outputs='text',
|
| 78 |
+
title=title,
|
| 79 |
+
description=description,
|
| 80 |
+
examples=["My name is Yuriy, contacts info: 0-800-123-456, [email protected], IP address is 1.0.0.1"]
|
| 81 |
+
).launch(debug=True)
|