Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import argparse | |
| import os | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from matplotlib.ticker import MultipleLocator | |
| from mmengine.config import Config, DictAction | |
| from mmengine.registry import init_default_scope | |
| from mmengine.utils import mkdir_or_exist, progressbar | |
| from PIL import Image | |
| from mmseg.registry import DATASETS | |
| init_default_scope('mmseg') | |
| def parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description='Generate confusion matrix from segmentation results') | |
| parser.add_argument('config', help='test config file path') | |
| parser.add_argument( | |
| 'prediction_path', help='prediction path where test folder result') | |
| parser.add_argument( | |
| 'save_dir', help='directory where confusion matrix will be saved') | |
| parser.add_argument( | |
| '--show', action='store_true', help='show confusion matrix') | |
| parser.add_argument( | |
| '--color-theme', | |
| default='winter', | |
| help='theme of the matrix color map') | |
| parser.add_argument( | |
| '--title', | |
| default='Normalized Confusion Matrix', | |
| help='title of the matrix color map') | |
| parser.add_argument( | |
| '--cfg-options', | |
| nargs='+', | |
| action=DictAction, | |
| help='override some settings in the used config, the key-value pair ' | |
| 'in xxx=yyy format will be merged into config file. If the value to ' | |
| 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
| 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
| 'Note that the quotation marks are necessary and that no white space ' | |
| 'is allowed.') | |
| args = parser.parse_args() | |
| return args | |
| def calculate_confusion_matrix(dataset, results): | |
| """Calculate the confusion matrix. | |
| Args: | |
| dataset (Dataset): Test or val dataset. | |
| results (list[ndarray]): A list of segmentation results in each image. | |
| """ | |
| n = len(dataset.METAINFO['classes']) | |
| confusion_matrix = np.zeros(shape=[n, n]) | |
| assert len(dataset) == len(results) | |
| ignore_index = dataset.ignore_index | |
| reduce_zero_label = dataset.reduce_zero_label | |
| prog_bar = progressbar.ProgressBar(len(results)) | |
| for idx, per_img_res in enumerate(results): | |
| res_segm = per_img_res | |
| gt_segm = dataset[idx]['data_samples'] \ | |
| .gt_sem_seg.data.squeeze().numpy().astype(np.uint8) | |
| gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten() | |
| if reduce_zero_label: | |
| gt_segm = gt_segm - 1 | |
| to_ignore = gt_segm == ignore_index | |
| gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore] | |
| inds = n * gt_segm + res_segm | |
| mat = np.bincount(inds, minlength=n**2).reshape(n, n) | |
| confusion_matrix += mat | |
| prog_bar.update() | |
| return confusion_matrix | |
| def plot_confusion_matrix(confusion_matrix, | |
| labels, | |
| save_dir=None, | |
| show=True, | |
| title='Normalized Confusion Matrix', | |
| color_theme='OrRd'): | |
| """Draw confusion matrix with matplotlib. | |
| Args: | |
| confusion_matrix (ndarray): The confusion matrix. | |
| labels (list[str]): List of class names. | |
| save_dir (str|optional): If set, save the confusion matrix plot to the | |
| given path. Default: None. | |
| show (bool): Whether to show the plot. Default: True. | |
| title (str): Title of the plot. Default: `Normalized Confusion Matrix`. | |
| color_theme (str): Theme of the matrix color map. Default: `winter`. | |
| """ | |
| # normalize the confusion matrix | |
| per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] | |
| confusion_matrix = \ | |
| confusion_matrix.astype(np.float32) / per_label_sums * 100 | |
| num_classes = len(labels) | |
| fig, ax = plt.subplots( | |
| figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300) | |
| cmap = plt.get_cmap(color_theme) | |
| im = ax.imshow(confusion_matrix, cmap=cmap) | |
| colorbar = plt.colorbar(mappable=im, ax=ax) | |
| colorbar.ax.tick_params(labelsize=20) # 设置 colorbar 标签的字体大小 | |
| title_font = {'weight': 'bold', 'size': 20} | |
| ax.set_title(title, fontdict=title_font) | |
| label_font = {'size': 40} | |
| plt.ylabel('Ground Truth Label', fontdict=label_font) | |
| plt.xlabel('Prediction Label', fontdict=label_font) | |
| # draw locator | |
| xmajor_locator = MultipleLocator(1) | |
| xminor_locator = MultipleLocator(0.5) | |
| ax.xaxis.set_major_locator(xmajor_locator) | |
| ax.xaxis.set_minor_locator(xminor_locator) | |
| ymajor_locator = MultipleLocator(1) | |
| yminor_locator = MultipleLocator(0.5) | |
| ax.yaxis.set_major_locator(ymajor_locator) | |
| ax.yaxis.set_minor_locator(yminor_locator) | |
| # draw grid | |
| ax.grid(True, which='minor', linestyle='-') | |
| # draw label | |
| ax.set_xticks(np.arange(num_classes)) | |
| ax.set_yticks(np.arange(num_classes)) | |
| ax.set_xticklabels(labels, fontsize=20) | |
| ax.set_yticklabels(labels, fontsize=20) | |
| ax.tick_params( | |
| axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) | |
| plt.setp( | |
| ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') | |
| # draw confusion matrix value | |
| for i in range(num_classes): | |
| for j in range(num_classes): | |
| ax.text( | |
| j, | |
| i, | |
| '{}%'.format( | |
| round(confusion_matrix[i, j], 2 | |
| ) if not np.isnan(confusion_matrix[i, j]) else -1), | |
| ha='center', | |
| va='center', | |
| color='k', | |
| size=20) | |
| ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1 | |
| fig.tight_layout() | |
| if save_dir is not None: | |
| mkdir_or_exist(save_dir) | |
| plt.savefig( | |
| os.path.join(save_dir, 'confusion_matrix.png'), format='png') | |
| if show: | |
| plt.show() | |
| def main(): | |
| args = parse_args() | |
| cfg = Config.fromfile(args.config) | |
| if args.cfg_options is not None: | |
| cfg.merge_from_dict(args.cfg_options) | |
| results = [] | |
| for img in sorted(os.listdir(args.prediction_path)): | |
| img = os.path.join(args.prediction_path, img) | |
| image = Image.open(img) | |
| image = np.copy(image) | |
| results.append(image) | |
| assert isinstance(results, list) | |
| if isinstance(results[0], np.ndarray): | |
| pass | |
| else: | |
| raise TypeError('invalid type of prediction results') | |
| dataset = DATASETS.build(cfg.test_dataloader.dataset) | |
| confusion_matrix = calculate_confusion_matrix(dataset, results) | |
| plot_confusion_matrix( | |
| confusion_matrix, | |
| dataset.METAINFO['classes'], | |
| save_dir=args.save_dir, | |
| show=args.show, | |
| title=args.title, | |
| color_theme=args.color_theme) | |
| if __name__ == '__main__': | |
| main() | |