thinkthink-dev commited on
Commit
d2ad716
·
verified ·
1 Parent(s): d482ce9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -181
README.md CHANGED
@@ -1,207 +1,95 @@
1
  ---
 
2
  base_model: unsloth/functiongemma-270m-it
3
  library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:unsloth/functiongemma-270m-it
7
- - lora
8
- - transformers
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
-
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
 
168
- #### Hardware
169
 
170
- [More Information Needed]
171
 
172
- #### Software
173
 
174
- [More Information Needed]
175
 
176
- ## Citation [optional]
 
 
 
 
177
 
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
 
180
- **BibTeX:**
 
 
 
181
 
182
- [More Information Needed]
 
 
 
 
 
 
183
 
184
- **APA:**
 
 
185
 
186
- [More Information Needed]
 
187
 
188
- ## Glossary [optional]
 
 
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
 
192
- [More Information Needed]
 
 
 
193
 
194
- ## More Information [optional]
 
 
 
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Authors [optional]
 
 
 
 
199
 
200
- [More Information Needed]
201
 
202
- ## Model Card Contact
 
 
 
 
 
 
 
 
 
203
 
204
- [More Information Needed]
205
- ### Framework versions
206
 
207
- - PEFT 0.17.1
 
1
  ---
2
+ license: apache-2.0
3
  base_model: unsloth/functiongemma-270m-it
4
  library_name: peft
 
5
  tags:
6
+ - bash
7
+ - code-generation
8
+ - function-calling
9
+ - nl2bash
10
+ - lora
11
+ datasets:
12
+ - NL2Bash
13
+ language:
14
+ - en
15
+ pipeline_tag: text-generation
16
  ---
17
 
18
+ # BashGemma 270M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ Fine-tuned FunctionGemma 270M for natural language to bash command translation.
21
 
22
+ **Paper**: [Zenodo DOI: 10.5281/zenodo.18058613](https://zenodo.org/records/18058613)
23
 
24
+ ## Model Description
25
 
26
+ BashGemma translates natural language queries into structured JSON tool calls representing bash commands. It achieves **57.4% NLC2CMD accuracy** on NL2Bash test data—a 52.9 percentage point improvement over the base FunctionGemma model.
27
 
28
+ | Metric | Baseline | BashGemma |
29
+ |--------|----------|-----------|
30
+ | NLC2CMD Accuracy | 0.045 | **0.574** |
31
+ | Utility Match | 0.000 | **0.595** |
32
+ | Parse Rate | 0.000 | **0.995** |
33
 
34
+ ## Usage
35
 
36
+ ```python
37
+ import torch
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+ from peft import PeftModel
40
 
41
+ # Load model
42
+ base_model = AutoModelForCausalLM.from_pretrained(
43
+ "unsloth/functiongemma-270m-it",
44
+ torch_dtype=torch.float32,
45
+ )
46
+ model = PeftModel.from_pretrained(base_model, "thinkthink-dev/bashgemma-270m")
47
+ tokenizer = AutoTokenizer.from_pretrained("thinkthink-dev/bashgemma-270m")
48
 
49
+ # Generate
50
+ prompt = "<start_of_turn>user\nFind all Python files in the current directory<end_of_turn>\n<start_of_turn>model\n"
51
+ inputs = tokenizer(prompt, return_tensors="pt")
52
 
53
+ with torch.no_grad():
54
+ outputs = model.generate(**inputs, max_new_tokens=150, do_sample=False)
55
 
56
+ print(tokenizer.decode(outputs[0], skip_special_tokens=False))
57
+ # {"name": "find", "arguments": {"name": "'*.py'", "path": "."}}
58
+ ```
59
 
60
+ ## Capabilities
61
 
62
+ **Strong performance on:**
63
+ - `find` with name, type, size, mtime filters
64
+ - Simple pipelines (2-3 commands)
65
+ - Common utilities: `grep`, `ls`, `cat`, `wc`, `sort`
66
 
67
+ **Limitations:**
68
+ - Complex multi-step operations
69
+ - Utilities not in training data (`rsync`, `tar`, etc.)
70
+ - Complex sed/awk patterns
71
 
72
+ ## Training
73
 
74
+ - **Base Model**: unsloth/functiongemma-270m-it
75
+ - **Method**: LoRA (rank=64, alpha=128)
76
+ - **Training Data**: 9,153 NL2Bash examples
77
+ - **Training Time**: 36 minutes on Apple M4 Max
78
+ - **Approach**: Response-only training (mask instruction tokens)
79
 
80
+ ## Citation
81
 
82
+ ```bibtex
83
+ @software{large2024bashgemma,
84
+ author = {Large, Jack},
85
+ title = {BashGemma: Fine-tuning a 270M Parameter Model for Natural Language to Bash Translation},
86
+ year = {2024},
87
+ publisher = {Zenodo},
88
+ doi = {10.5281/zenodo.18058613},
89
+ url = {https://zenodo.org/records/18058613}
90
+ }
91
+ ```
92
 
93
+ ## License
 
94
 
95
+ Apache 2.0 (same as base Gemma model)